Patents Assigned to STMicroelectronics S.r.l.
  • Patent number: 9523725
    Abstract: Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitive to voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: December 20, 2016
    Assignees: STMICROELECTRONICS ASIA PACIFIC PTE LTD, STMICROELECTRONICS S.R.L.
    Inventors: Kien Beng Tan, Ernesto Lasalandra, Tommaso Ungaretti, Yannick Guedon, Dianbo Guo, Paolo Angelini, Giovanni Carlo Tripoli
  • Patent number: 9523566
    Abstract: Electric circuit for estimating the angular position of a rotor of an electric motor, including: a sensing module configured to receive at least one electric signal representative of a drive current of the electric motor and to generate a measurement signal indicative of a switching of the at least one electric signal and a switching index indicative of the type of switching, rising or falling, of the at least one electric signal; and a computing module configured to supply, from the measurement signal and switching index a position signal representative of an angular position of the electric motor rotor.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: December 20, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Giuseppe D'Angelo, Giovanni Moselli, Virginia Clemente
  • Patent number: 9518886
    Abstract: A pressure sensor includes a body made of semiconductor material having a first type of conductivity and a pressure-sensitive structure having the first type of conductivity defining a suspended membrane. One or more piezoresistive elements having a second type of conductivity (P) are formed in the suspended membrane. The piezoresistive elements form, with the pressure-sensitive structure, respective junction diodes. A temperature sensing method includes: generating a first current between conduction terminals common to the junction diodes; detecting a first voltage value between the common conduction terminals when the first current is supplied; and correlating the detected first voltage value to a value of temperature of the diodes. The temperature value thus calculated can be used for correcting the voltage signal generated at output by the pressure sensor when the latter is operated for sensing an applied outside pressure which deforms the suspended membrane.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: December 13, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Lorenzo Baldo, Michele Vaiana, Mario Chiricosta, Mario Maiore, Paul Georges Marie Rose
  • Patent number: 9520828
    Abstract: An oscillator circuit includes first and second oscillators arranged in a series configuration between a supply voltage node and a reference voltage node. The first and second oscillators are configured to receive a synchronizing signal for controlling synchronization in frequency and phase. An electromagnetic network provided to couple the first and the second oscillators includes a transformer with a primary circuit and a secondary circuit. The primary circuit includes a first portion coupled to the first oscillator and second portion coupled to the second oscillator. The first and second portions are connected by a circuit element for reuse of current between the first and second oscillators. The oscillator circuit is fabricated as an integrated circuit device wherein the electromagnetic network is formed in metallization layers of the device. The secondary circuit generates an output power combining power provided from the first and second portions of the primary circuit.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: December 13, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Egidio Ragonese, Vincenzo Fiore, Nunzio Spina, Giuseppe Palmisano
  • Patent number: 9520796
    Abstract: The present disclosure is directed to a high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a sinusoidal reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: December 13, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Claudio Adragna, Giovanni Gritti
  • Patent number: 9520769
    Abstract: A switching converter converts an input signal to a regulated output signal using a switch and a transformer with a primary winding and a secondary winding. A wake up management circuit receives a transformer demagnetization signal and forces by wake up pulses the switch on when the switching converter operates in a burst mode. Sampled values of the transformer demagnetization signal are received. A setting circuit sets a first peak value of the current of the primary winding. A comparison circuit compare the sampled values with a voltage threshold and the preceding sampled value. In response thereto, the first peak value of the primary winding current is either maintained or a new peak value is set.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: December 13, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alfio Pasqua, Salvatore Tumminaro, Andrea Rapisarda
  • Patent number: 9520468
    Abstract: A power device integrated on a semiconductor substrate and having a plurality of conductive bridges within a trench gate structure. In an embodiment, a semiconductor substrate includes a trench having sidewalls and a bottom, the walls and bottom are covered with a first insulating coating layer which then also includes a conductive gate structure. An embodiment provides the formation of the conductive gate structure with covering at least the sidewalls with a second conductive coating layer of a first conductive material. This results in a conductive central region of a second conductive material having a different resistivity than the first conductive material forming a plurality of conductive bridges between said second conductive coating layer and said conductive central region.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: December 13, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Angelo Magri′, Antonino Sebastiano Alessandria, Stefania Fortuna, Leonardo Fragapane
  • Patent number: 9520921
    Abstract: An embodiment of a network of electronic devices is formed on a flexible substrate by a plurality of electronic devices assembled on the flexible substrate. The electronic devices have an embedded antenna for mutual coupling of a wireless type. Each electronic device is formed by a chip or a complex system integrating a transceiver circuit coupled to the embedded antenna and a functional part coupled to the transceiver circuit and including at least one element chosen in the group comprising: a sensor, an actuator, an interface, an electrode, a memory, a control unit, a power-supply unit, a converter, an adapter, a digital circuit, an analog circuit, an RF circuit, a microelectromechanical system, an electrode, a well, a cell, a container for liquids. The flexible support may be a substrate of plastic material that incorporates the electronic devices or a garment having smart buttons that house the electronic devices.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: December 13, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventor: Alberto Pagani
  • Patent number: 9515136
    Abstract: An integrated device has: a structural layer of semiconductor material doped with a first conductivity type and having a top surface defining a plane; a functional region, doped with a second conductivity type, arranged in an active area of the structural layer at the top surface, in the proximity of an edge area of the integrated device, which externally surrounds the active area; and an edge termination region, doped with the second conductivity type, joined to the functional region and arranged in the edge area. The edge termination region has a doping profile and a junction depth that vary in a first direction parallel to the plane.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: December 6, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventor: Leonardo Fragapane
  • Patent number: 9510768
    Abstract: A device for measuring impedance of biological tissue may include electrodes and a voltage-to-current converter coupled to the electrodes to drive an alternating current (AC) through the tissue and sense an AC voltage. The converter may include an amplifier having first and second inputs and an output, a first voltage divider coupled to the first input, a second voltage divider coupled to the second input, a filter capacitor coupled between the output and the second voltage divider, a current limiting resistor coupled between the second input the second voltage divider, and a bypass capacitor coupled to the second input of the amplifier and in parallel with the resistor. A single-ended amplitude modulation (AM) demodulator may demodulate the AC voltage and generate a corresponding baseband voltage representing the impedance. The device may also include an output circuit to generate output signals representative of DC and AC components of the baseband voltage.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: December 6, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Stefano Rossi
  • Patent number: 9514879
    Abstract: An embodiment of an electronic system includes a first electronic circuit and a second electronic circuit. The electronic system further includes a resonant LC circuit having a resonance frequency for coupling the first electronic circuit and the second electronic circuit; each electronic circuit includes functional means for providing a signal at the resonance frequency to be transmitted to the other electronic circuit through the LC circuit and/or for receiving the signal from the other electronic circuit. The LC circuit also include capacitor means having at least one first capacitor plate included in the first electronic circuit and at least one second capacitor plate included in the second electronic circuit. The LC circuit further includes first inductor means included in the first electronic circuit and/or second inductor means included in the second electronic circuit.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: December 6, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Alberto Pagani
  • Patent number: 9513310
    Abstract: A z-axis micro-electro-mechanical detection structure, having a substrate defining a plane and a suspended mass carried by two anchorage elements. The suspended mass includes a translating mass, suspended over the substrate, mobile in a transverse direction to the plane and arranged between the anchorage elements and two tilting masses, each of which is supported by the anchorage elements through respective elastic anchorage elements so as to be able to rotate with respect to respective oscillation axes. The oscillation axes are parallel to each other to enable a translation movement of the translating mass. Fixed electrodes face at a distance the tilting masses or the translating mass so as to be able to detect displacement of the suspended mass as a result of external forces. Elastic supporting elements are arranged between the translating mass and the tilting masses to enable relative rotation between the translating mass and the tilting masses.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: December 6, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Leonardo Baldasarre, Alessandro Tocchio, Sarah Zerbini
  • Publication number: 20160351477
    Abstract: A method for manufacturing a surface-mount electronic device includes making a first partial cut from a bottom of an assembly that includes a first semiconductor body that is disposed on a first die pad, a second semiconductor body that is disposed on a second die pad, and a plurality of terminal regions that is disposed between the first and second die pads. The first partial cut forms a recess by removing a portion of each of the terminal regions. The recess is defined by a transverse wall, a first sidewall, and a second sidewall. The first and second sidewalls and the transverse wall are coated with an anti-oxidation layer. A second partial cut is made from the top, where the second partial cut removes the transverse wall, separates the first and second semiconductor bodies, and has a width that is greater than a width of the first partial cut.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Applicant: STMicroelectronics S.r.l.
    Inventor: Fabio Marchisi
  • Patent number: 9508846
    Abstract: A MOS semiconductor device of a vertical type has: a functional layer, having a first type of conductivity; gate structures, which are formed above the functional layer and have a region of dielectric material and an electrode region; body wells, which have a second type of conductivity, are formed within the functional layer, and are separated by a surface separation region; source regions, which have the first type of conductivity and are formed within the body wells. Each gate structure extends laterally above just one respective body well and does not overlap the surface separation region of the functional layer. The device may further have: at least one shield structure, arranged between adjacent gate structures above the surface separation region; and/or at least one doped control region, having the second type of conductivity, arranged within the surface separation region, which are both set at the source potential.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: November 29, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Antonino Schillaci, Alfonso Patti, Paola Maria Ponzio
  • Patent number: 9508520
    Abstract: An integrated vacuum microelectronic device comprises: a highly doped semiconductor substrate, at least one insulating layer) placed above said doped semiconductor substrate, a vacuum aperture formed within said at least one insulating layer and extending to the highly doped semiconductor substrate, a first metal layer acting as a cathode, a second metal layer placed under said highly doped semiconductor substrate and acting as an anode. The first metal layer is placed adjacent to the upper edge of the vacuum aperture and the vacuum aperture has a width dimension such as the first metal layer remains suspended over the vacuum aperture.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: November 29, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Davide Giuseppe Patti
  • Publication number: 20160344235
    Abstract: An energy-scavenging interface includes first and second switches connected in series between an input and reference, and third and fourth switches connected in series between the input and an output. A control circuit closes the first and second switches and opens the third switch for a first time interval to store charge in a storage element. A scaled copy of a peak value of the charging current is obtained. The control circuit then opens the first switch and closes the third and fourth switches to generate an output signal as long as the value in current of the output signal is higher than the value of said scaled copy of the peak value.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Applicant: STMicroelectronics S.r.l.
    Inventors: Stefano Ramorini, Alessandro Gasparini, Alberto Cattani
  • Patent number: 9502115
    Abstract: An input signal is amplified into an output signal that is to be applied to an electrical load including a capacitive component. An amplifier stage includes a pre-amplifier module to receive a first supply voltage, and an output module to receive a second supply voltage. The pre-amplifier module includes a first gain block to pre-amplify the input signal into a first pre-amplified signal, and a second gain block to pre-amplify the input signal into a second pre-amplified signal. A feedback block feeds back the output signal as a feedback signal. A combination element combines the first pre-amplified signal and the feedback signal into a combined signal. The output module combines the combined signal and the second pre-amplified signal into the output signal.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: November 22, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Antonino Conte, Maria Giaquinta
  • Patent number: 9501713
    Abstract: Compact descriptors of digital images are produced by detecting interest points representative of the digital images and selecting out of the interest points key points for producing e.g. local and global compact descriptors of the images. The digital images are decomposed into blocks by computing an energy (variance) for each said block and then subjecting the blocks to culling by rejecting those blocks having an energy failing to pass an energy threshold. The interest points are detected only in the blocks resulting from culling, and the key points for producing the compact descriptors are selected out of the interest points thus detected, possibly by using different selection thresholds for local and global compact descriptors, respectively. The number of key points for producing the compact descriptors may be varied e.g. by adaptively varying the number of the interest points detected in the blocks resulting from culling.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: November 22, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventor: Danilo Pietro Pau
  • Patent number: 9497464
    Abstract: A GOP-independent dynamic bit-rate controller system includes a user interface to receive one or more input parameters, a bit-rate controller and an encoder. The bit-rate controller regulates a bit-rate of an output bit-stream. The bit-rate controller includes multiple bit-rate modules to determine a bit-estimate and a quantization parameter, and a control module to calculate a convergence period based on the received input parameters and a frame rate. The control module selects a bit rate module based on the convergence period and the encoder generates the output bit-stream using the quantization parameter determined by the bit rate module.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 15, 2016
    Assignees: STMICROELECTRONICS INTERNATIONAL N.V., STMICROELECTRONICS S.R.L.
    Inventors: Subarna Tripathi, Emiliano Piccinelli
  • Patent number: 9496392
    Abstract: An integrated vacuum microelectronic structure is described as having a highly doped semiconductor substrate, a first insulating layer placed above said doped semiconductor substrate, a first conductive layer placed above said first insulating layer, a second insulating layer placed above said first conductive layer, a vacuum trench formed within said first and second insulating layers and extending to the highly doped semiconductor substrate, a second conductive layer placed above said vacuum trench and acting as a cathode, a third metal layer placed under said highly doped semiconductor substrate and acting as an anode, said second conductive layer is placed adjacent to the upper edge of said vacuum trench, the first conductive layer is separated from said vacuum trench by portions of said second insulating layer and is in electrical contact with said second conductive layer.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: November 15, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Davide Giuseppe Patti, Gianleonardo Grasso