Abstract: An electronic device includes a thyristor having an anode, a cathode, a first bipolar transistor disposed on the anode side. A second bipolar transistor is disposed on the cathode side. These two bipolar transistors are nested and connected between the anode and the cathode. A MOS transistor is coupled between the collector region and the emitter region of the second bipolar transistor. The transistor has a gate region connected to the cathode via a resistive semiconductor region incorporating at least a part of the base region of the second bipolar transistor.
Type:
Grant
Filed:
June 30, 2016
Date of Patent:
June 12, 2018
Assignee:
STMicroelectronics SA
Inventors:
Jean Jimenez, Boris Heitz, Johan Bourgeat, Agustin Monroy Aguirre
Abstract: An integrated circuit is produced on a bulk semiconductor substrate in a given CMOS technology and includes a semiconductor device for protection against electrostatic discharges. The semiconductor device has a doublet of floating-gate, thyristors coupled in parallel and head-to-tail. Each thyristor has a pair of electrode regions. The two thyristors respectively have two separate gates and a common semiconductor gate region. The product of the current gains of the two transistors of each thyristor is greater than 1. Each electrode region of at least one of the thyristors has a dimension, measured perpendicularly to the spacing direction of the two electrodes of the corresponding pair, which is adjusted so as to impart to the thyristor an intrinsic triggering voltage less than the breakdown voltage of a transistor to be protected, and produced in the CMOS technology.
Abstract: A heat-transferring device is formed by a stack that includes at least one heat-conducting layer and at least one heat-absorbing layer. The at least one heat-conducting layer has at least one heat-collecting section placed facing a heat source and at least one heat-evacuating section placed facing a heat sink. The at least one heat-absorbing layer includes a phase-change material. One face of the at least one heat-absorbing layer is adjoined to at least one portion of at least one face of the heat-conducting layer.
Type:
Application
Filed:
November 2, 2017
Publication date:
May 24, 2018
Applicants:
STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA
Inventors:
Rafael Augusto Prieto Herrera, Jean-Philippe Colonna, Perceval Coudrain
Abstract: The invention relates to a method for manufacturing a transistor comprising the preparation of a stack of layers of the semiconductor on insulator type comprising at least one substrate on which an insulating layer and an initial semiconductor layer are successively disposed. The method includes the formation of at least one oxide pad extending from a top face of the insulating layer, the formation of an additional layer made from semiconductor material covering the oxide pad and intended to form a channel for the transistor, the formation of a gate stack above the oxide pad, and the formation of a source and drain on either side of the gate stack.
Type:
Grant
Filed:
October 26, 2015
Date of Patent:
May 22, 2018
Assignees:
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMICROELECTRONICS (Crolles 2) SAS, STMICROELECTRONICS SA
Abstract: An image formed from pixels each having components defining a color is processed to implement an increase in the saturation of the image depending on a gain applied by a transfer function depending on the components of the color of each pixel. The gain of the transfer function is parameterized using at least one control parameter respectively dedicated to at least one type of reference image content. The value of the at least one control parameter is calculated depending on the actual content of the image by implementing calculations including determining colorimetric statistics of the pixels of the image and processing the statistics in accordance with at least one processing model respectively associated with the at least one type of reference image content.
Abstract: A semiconductor electro-optical phase shifter may include a substrate, an optical waveguide segment (12) formed on the substrate, and first and second zones of opposite conductivity types configured to form a first bipolar junction perpendicular to the substrate. The phase shifter may also include a dynamic control structure configured to reverse bias the first junction and a static control structure configured to direct a quiescent current in the second zone, parallel to the first junction.
Abstract: An electronic device is formed by a sequence of at least two thyristors coupled in series in a same conduction direction. Each thyristor has a gate of a first conductivity type. The gates of the first conductivity type for the thyristors in the sequence are coupled together in order to form a single control gate.
Abstract: A method of manufacturing a heat pipe, including the steps of: forming in a substrate a cylindrical opening provided with a plurality of ring-shaped recessed radially extending around a central axis of the opening; arranging in the recesses separate ring-shaped strips made of a material catalyzing the growth of carbon nanotubes; and growing carbon nanotubes in the opening from said ring-shaped strips.
Type:
Grant
Filed:
March 10, 2015
Date of Patent:
April 24, 2018
Assignees:
STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
Inventors:
Pascal Ancey, Simon Gousseau, Olga Kokshagina
Abstract: A bipolar transistor is supported by a single-crystal silicon substrate including a collector contact region. A first epitaxial region forms a collector region of a first conductivity type on the collector contact region. A second epitaxial region forms a base region of a second conductivity type. Deposited semiconductor material forms an emitter region of the first conductivity type. The collector region, base region and emitter region are located within an opening having sidewalls lined with an insulating sheath. A portion of the insulating sheath adjacent the base region is removed and a base contact region is formed by epitaxial material grown from a portion of the base region exposed by removal of the portion of the insulating sheath.
Abstract: An ESD protection device includes a MOS transistor connected between a first terminal and a second terminal and having a gate region, source/drain region and a well region electrically coupled by a resistive-capacitive circuit configured to control turn on of the MOS transistor in response to an ESD event. The resistive-capacitive circuit has a common part with at least one of the source, gate or drain regions of the MOS transistor and includes a capacitive element and a resistive element. A first electrode of the capacitive element is formed by the resistive element and a second electrode of the capacitive element is formed by at least a portion of a semiconductor film within which the source/drain region is formed.
Abstract: An ESD protection device includes a MOS transistor connected between a first terminal and a second terminal and having a gate region, source/drain region and a well region electrically coupled by a resistive-capacitive circuit configured to control turn on of the MOS transistor in response to an ESD event. The resistive-capacitive circuit has a common part with at least one of the source, gate or drain regions of the MOS transistor and includes a capacitive element and a resistive element. A first electrode of the capacitive element is formed by the resistive element and a second electrode of the capacitive element is formed by at least a portion of a semiconductor film within which the source/drain region is formed.
Abstract: A low-noise amplifier device includes an inductive input element, an amplifier circuit, an inductive output element and an inductive degeneration element. The amplifier device is formed in and on a semiconductor substrate. The semiconductor substrate supports metallization levels of a back end of line structure. The metal lines of the inductive input element, inductive output element and inductive degeneration element are formed within one or more of the metallization levels. The inductive input element has a spiral shape and the an amplifier circuit, an inductive output element and an inductive degeneration element are located within the spiral shape.
Abstract: A gas phase epitaxial deposition method deposits silicon, germanium, or silicon-germanium on a single-crystal semiconductor surface of a substrate. The substrate is placed in an epitaxy reactor swept by a carrier gas. The substrate temperature is controlled to increase to a first temperature value. Then, for a first time period, at least a first silicon precursor gas and/or a germanium precursor gas introduced. Then, the substrate temperature is decreased to a second temperature value. At the end of the first time period and during the temperature decrease, introduction of the first silicon precursor gas and/or the introduction of a second silicon precursor gas is maintained. The gases preferably have a partial pressure adapted to the formation of a silicon layer having a thickness smaller than 0.5 nm.
Type:
Application
Filed:
May 15, 2017
Publication date:
April 5, 2018
Applicants:
STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
Abstract: An electronic chip includes FDSOI-type field-effect transistors. The transistor each have a channel region that is doped at an average level in a range from 1016 to 5*1017 atoms/cm3 with a conductivity type opposite to that of a conductivity type for the dopant in the drain and source regions.
Type:
Application
Filed:
October 2, 2017
Publication date:
April 5, 2018
Applicants:
STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA, Commissariat A L'Energie Atomique et aux Energies Alternatives
Inventors:
Vincent Barral, Nicolas Planes, Antoine Cros, Sebastien Haendler, Thierry Poiroux, Olivier Weber, Patrick Scheer
Abstract: An attenuator includes: a first circuit including a common collector or common drain amplifier formed of a first transistor having its control node connected to an input of the attenuator and its emitter or source connected to an intermediate node of the attenuator; and a second circuit including a common collector or common drain amplifier formed of a second transistor having its emitter or source connected to the intermediate node and its control node connected to an output of the attenuator.
Type:
Grant
Filed:
September 8, 2015
Date of Patent:
March 27, 2018
Assignees:
STMICROELECTRONICS (CROLLES 2) SAS, STMICROELECTRONICS SA
Inventors:
Thomas Quemerais, Alice Bossuet, Daniel Gloria
Abstract: A semiconductor wafer suitable for fabricating an SOI substrate is provided by: producing a first layer of polycrystalline semiconductor on a top side of a semiconductor carrier; then forming an interface zone on a top side of the first layer, wherein the interface zone has a structure different from a crystal structure of the first layer; and then producing a second layer of polycrystalline semiconductor on the interface zone.
Abstract: The synchronous retention flip-flop circuit comprises a first circuit module suitable for being powered by an interruptible power source and a second circuit module suitable for being powered by a permanent power source. The first circuit module includes first and second latch stages, which are configured to store at least one datum while said interruptible power source is supplying power, transmitting means suitable for being controlled by a second control signal and configured to deliver said at least one datum to the second circuit module before an interruption of said interruptible power source, the second circuit module being configured to preserve said at least one datum during said interruption, and restoring means suitable for being controlled by a first control signal and configured to restore said at least one datum at the end of said interruption. Only the second control signal remains active during interruption of the interruptible power source.
Type:
Application
Filed:
March 17, 2017
Publication date:
March 22, 2018
Applicants:
STMicroelectronics SA, STMicroelectronics International N.V.
Abstract: A synchronous retention flip-flop circuit includes a first circuit module powered by an interruptible power source and a second circuit module powered by a permanent power source. The first circuit module includes a first latch circuit and a second latch circuit which are configured to store at least one datum while the interruptible power source is supplying power. A transmission circuit operates to deliver the at least one datum to the second circuit module before an interruption of the interruptible power source. The second circuit module preserves the at least one datum during the interruption. Following an end of the interruption, a restoring circuit transfers the at least one datum from the second circuit module to the first circuit module via a single one of the first and second latch circuits.
Type:
Application
Filed:
March 16, 2017
Publication date:
March 22, 2018
Applicants:
STMicroelectronics International N.V., STMicroelectronics SA
Inventors:
Alok Kumar Tripathi, Amit Verma, Pascal Urard
Abstract: A method for securing a data processing system having a processing unit is disclosed. At least a group of N1 digital words of m1 bits is selected from among the set of M1 digital words. N1 is less than M1. These words are selected in such a way that each selected digital word differs from all the other selected digital words by a number of bits at least equal to an integer p which is at least equal to 2. The group of N1 digital words of m1 bits forms at least one group of N1 executable digital instructions. The processing unit is configured to make it capable of executing each instruction of the at least one group of N1 executable digital instructions.
Abstract: A method of fabrication, including the steps for supplying a substrate including a layer of semiconductor material covered by a sacrificial gate including a sacrificial gate insulator including a middle part, and edges covered by sacrificial spacers and having a thickness tox; removal of the sacrificial gate insulator and the sacrificial gate material; formation of a conformal deposition of thickness thk of dielectric material inside of the groove formed in order to form a gate insulator, with tox>thk?tox/2; formation of a gate electrode within the groove; removal of the sacrificial spacers so as to open up edges of the gate insulator layer; formation of spacers on the edges of the gate insulator layer on either side of the gate electrode, these spacers having a dielectric constant at the most equal to 3.5.
Type:
Grant
Filed:
March 21, 2017
Date of Patent:
March 6, 2018
Assignees:
Commissariat A L'Energie Atomique et aux Energies Alternatives, STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
Inventors:
Cyrille Le Royer, Frederic Boeuf, Laurent Grenouillet, Louis Hutin, Yves Morand