Patents Assigned to Texas A & M University System
  • Publication number: 20230183401
    Abstract: Processes of polymerizing polyolefins and synthesis of activators. The polymerization processes include polymerizing one or more (C2-C12)?-olefin monomers in the presence of at least one catalyst and at least one co-catalyst to produce a polyolefin. The co-catalyst includes a cation and an anion, in which the anion has a structure having a vinyl terminated alkene, one boron atom or more than one boron atoms, and at least four halogen atoms. The anion of the co-catalysts is incorporated into a polymer chain of the polyolefin.
    Type: Application
    Filed: April 30, 2020
    Publication date: June 15, 2023
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Richard J. Keaton, Oleg V. Ozerov, Qingheng Lai, Jerzy Klosin, Michael J. Lesniak, David M. Pearson, Todd D. Senecal, William H.H. Woodward, Sukrit Mukhopadhyay, John R. Stutzman, Susan O. Gunther
  • Patent number: 11673663
    Abstract: A multi-modal vehicle includes a frame, a rotor pivotally mounted to the frame, the rotor including a first position and a second position circumferentially spaced from the first position, and a motor coupled to the rotor and configured to rotate the rotor, wherein, when the rotor is disposed in the first position, the rotor is configured to generate lift when actuated by the motor, wherein, when the rotor is disposed in the second position, the rotor is configured to engage a surface to transport the vehicle when actuated by the motor.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: June 13, 2023
    Assignees: The Texas A&M University System, University of Maryland
    Inventors: Moble Benedict, Hunter Denton, Vikram Hrishikeshavan
  • Patent number: 11674876
    Abstract: The system includes a gas tank. A reference volume is fluidly coupled to the gas tank. A coreholder fluidly is coupled to the reference volume. A sample is disposed in the coreholder. A fluid pump is fluidly coupled to the coreholder. A first pressure transducer is fluidly coupled between the fluid pump and the coreholder. The first pressure transducer measures a confining pressure. A second pressure transducer is fluidly coupled to the coreholder. The second pressure transducer measures upstream pressure within the coreholder.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: June 13, 2023
    Assignee: The Texas A&M University System
    Inventors: Ibrahim Yucel Akkutlu, Ivan C. Aldana
  • Publication number: 20230175839
    Abstract: A method for inspecting a photomask includes scanning the photomask with an interferometric fringe pattern generated by an interferometer, generating an interferogram associated with the photomask in response to scanning the photomask using the interferometer, and detecting one or more geometric parameters of the photomask using the generated interferogram.
    Type: Application
    Filed: December 2, 2022
    Publication date: June 8, 2023
    Applicant: The Texas A&M University System
    Inventor: ChaBum Lee
  • Publication number: 20230174767
    Abstract: A composition includes a thermoplastic polymer and a polyrotaxane. The polyrotaxane includes a plurality of cyclic molecules and a chain polymer passing through the plurality of the cyclic molecules in a skewering manner, at least a part of the hydroxyl groups of the plurality of cyclic molecules being substituted with a hydrophobic group. A group that enhances miscibility of the polyrotaxane to the thermoplastic polymeris bound to at least a part of the hydrophobic groups of each of the plurality of cyclic molecules.
    Type: Application
    Filed: August 28, 2020
    Publication date: June 8, 2023
    Applicants: The Texas A&M University System, The University of Tokyo
    Inventors: Hung-Jue Sue, Chia-Ying Tsai, Glendimar S. Molero, Kohzo Ito, Koichi Mayumi, Shuntaro Uenuma, Shota Ando
  • Publication number: 20230173744
    Abstract: Methods and systems of 3D printing non-photocurable thermosetting polymer materials and continuous fiber composites that reduces the manufacturing time and energy required by implementing fast, self-sustaining, and self-propagating, in-situ curing of the polymer and the and continuous fiber composites as the non-photocurable thermosetting polymer materials are being printed.
    Type: Application
    Filed: April 30, 2021
    Publication date: June 8, 2023
    Applicants: TEXAS TECH UNIVERSITY SYSTEM, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Jingjing Qui, Shiren Wang
  • Publication number: 20230159753
    Abstract: A resin composition is provided. The resin composition includes a rigid polymer resin, a functionalized polyrotaxane, and (optionally) a core-shell polymer. The resin composition may be cured to form a cured thermoset resin. The cured thermoset set has improved mechanical properties relative to a reference cured thermoset. A method of preparing a cured article of the curable resin composition is also provided. The method includes providing the curable resin composition and curing the curable composition.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 25, 2023
    Applicants: The Texas A&M University System, KANEKA CORPORATION
    Inventors: Hung-Jue Sue, Masaya Kotaki, Zewen Zhu
  • Patent number: 11649392
    Abstract: A variety of fluid loss control compositions and methods are provided for controlling fluid loss in a cementing operation. As described herein, polyelectrolyte complex nanoparticles and fluid loss control compositions containing polyelectrolyte complex nanoparticles can be effective for fluid loss control in a variety of cementing operations. Methods of making and methods of using the electrolyte complex nanoparticles and fluid loss control compositions containing polyelectrolyte complex nanoparticles are also provided. The polyelectrolyte complex nanoparticles can include a polycation polymer such as a branched chain polyethylenimine, and a polyanion polymer such as polyacrylic acid or poly(vinylsulfonic) acid. The polyelectrolyte complex nanoparticles can contain additional additives such as metal ions or fluid loss additives such as a cellulose polymer.
    Type: Grant
    Filed: November 3, 2018
    Date of Patent: May 16, 2023
    Assignee: The Texas A&M University System
    Inventors: Ying-Ying Lin, Jenn-Tai Liang, Corbin D. Andersen
  • Patent number: 11648079
    Abstract: An apparatus for surgical lighting is disclosed. The apparatus includes a light emitting element formed with a light source encapsulated within an outer layer. The outer layer includes a biocompatible material. A power supply is coupled to the light source. The apparatus includes an actuating mechanism that controls power from the power supply to the light source to emit light along a surgical area. The light emitting element provides enhanced illumination and other surgical advantages.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: May 16, 2023
    Assignees: Dignity Health, The Texas A&M University System
    Inventors: Clinton Morgan, Peter Nakaji, Sung II Park
  • Patent number: 11642849
    Abstract: Bio-Inks and methods of using compositions comprising the bio-Inks are disclosed. 3-D tissue repair and regeneration through precise and specific formation of biodegradable tissue scaffolds in a tissue site using the bio-inks are also provided. Specific methylacrylated gelatin hydrogels (MAC) and methacrylated chitosan (MACh) preparations formulated with sucrose, a silicate-containing component (such as laponite), and/or a cross-linking agent (such as a photo-initiator or chemical initiator), as well as powdered preparations of these, are also disclosed. Kits containing these preparations are provided for point-of-care tissue repair in vivo. Superior, more complete (up to 99.85% tissue regeneration within 4 weeks applied in situ), and rapid in situ tissue repair and bone formation are also demonstrated.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 9, 2023
    Assignees: The Texas A&M University System, The Board of Regents, The University of Texas System
    Inventors: Venu G. Varanasi, Azhar Ilyas, Philip Roger Kramer, Taha Azimaie, Pranesh B. Aswath, Tugba Cebe
  • Patent number: 11646165
    Abstract: In an embodiment, the present disclosure pertains to a method of creating a supercapacitor. The method includes forming an anode and a cathode, each composed of a substrate having at least one of a lignin, a lignin-based composite, activated carbon, a plant extract, a cellulose by-product, biofuel waste, one or more metals, a metal oxide, a monometallic tungstate, or a bimetallic tungstate, and sandwiching an electrolyte coated separator between the anode and the cathode. In an addition embodiment, the present disclosure pertains to an electrode composed of a particle-decorated lignin. In some embodiments, the particle-decorated lignin includes particles that can include, without limitation, MnO2, NiWO4, MnO2, NiCoWO4, CoWO4, and combinations thereof. In a further embodiment, the present disclosure pertains to a supercapacitor made via the methods of the present disclosure.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: May 9, 2023
    Assignee: The Texas A&M University System
    Inventors: Hong Liang, Swarn Jha, Siddhi Gajanan Mehta
  • Publication number: 20230139680
    Abstract: Embodiments of the present disclosure pertain to methods of selecting cyclic peptides that bind to a target by transforming a phage display library with a plurality of nucleic acids into bacterial host cells, where the nucleic acids include phage coat protein genes with a combinatorial region that encodes at least one cysteine and at least one non-canonical amino acid. The transformation results in the production of phage particles with phage coat proteins where the cysteine and the non-canonical amino acid couple to one another to form a cyclic peptide library. Phage particles are then screened against the desired target to select bound cyclic peptides. Amino acid sequences of the selected cyclic peptides are then identified. Additional embodiments pertain to methods of constructing a phage display library that encodes the cyclic peptides. Further embodiments of the present disclosure pertain to the produced cyclic peptides, phage display libraries and phage particles.
    Type: Application
    Filed: May 20, 2019
    Publication date: May 4, 2023
    Applicant: The Texas A&M University System
    Inventor: Wenshe Liu
  • Patent number: 11637426
    Abstract: A device includes an input converter, an output converter, and a controller. The input converter is electrically coupled to an electrical meter and an energy production array. The output converter is electrically coupled to the energy production array and a load. The controller is communicatively coupled to the input converter, the output converter, the energy production array, and the load. The input converter and the output converter are positioned between the electrical meter and the load.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 25, 2023
    Assignee: The Texas A&M University System
    Inventors: Panganamala R. Kumar, Le Xie, Prasad N. Enjeti
  • Publication number: 20230117980
    Abstract: A system employs Graph Prototypical Networks (GPN) for few-shot node classification on attributed networks, and a meta-learning framework trains the system by constructing a pool of semi-supervised node classification tasks to mimic the real test environment. The system is able to perform meta-learning on an attributed network and derive a highly generalizable model for handling the target classification task. The meta-learning framework addresses extraction of meta-knowledge from an attributed network for few-shot node classification, and identification of the informativeness of each labeled instance for building a robust and effective model.
    Type: Application
    Filed: October 6, 2022
    Publication date: April 20, 2023
    Applicants: Arizona Board of Regents on Behalf of Arizona State University, The Texas A&M University System
    Inventors: Kaize Ding, Jianling Wang, Huan Liu
  • Publication number: 20230113363
    Abstract: Methods of treating endometriosis through modulation of Nuclear Receptor Subfamily 4 Group A Member 1 (NR4A1) activity including administration of an NR4A1 ligand to an individual in need thereof are described. In an embodiment, the compounds include methylene substituted diindolylmethanes.
    Type: Application
    Filed: February 24, 2021
    Publication date: April 13, 2023
    Applicant: THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Stephen Safe, Kumaravel Mohankumar
  • Patent number: 11623867
    Abstract: Methods and reactors for electrochemically expanding a parent material and expanded parent materials are described. Current methods of expanding parent materials incompletely-expand parent material, requiring expensive and time-consuming separation of expanded parent material from unexpanded parent materials. This problem is addressed by the methods and reactor for electrochemically expanding a parent material described herein, which during operation maintain electrical connectivity between the parent material and an electrical power source. The resulting materials described herein have a greater proportion of expanded parent material relative to unexpanded parent material compared to those made according to others methods.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: April 11, 2023
    Assignee: The Texas A&M University System
    Inventors: Thomas C. Achee, Micah J. Green, Charles B. Sweeney, Wanmei Sun
  • Patent number: 11624151
    Abstract: A textile includes a substrate and a coating applied to a surface of the substrate. The coating includes a plurality of bilayers positioned one on top of the other. Each bilayer includes a first layer including a cationic polymer and a second layer comprising an anionic polymer. The cationic polymer in the first layer includes a polyethyleneimine (PEI), a poly(vinyl amine) (PVAm), a poly(allyl amine) (PAAm), a polydiallyldimethylammonium chloride (PDDA), or a chitosan (CH). The anionic polymer in the second layer includes a poly(acrylic acid) (PAA), a poly(styrene sulfonate) (PSS), a poly(methacrylic acid) (PMAA), a poly(sodium phosphate) (PSP), or a poly(vinyl sulfate) (PVS).
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: April 11, 2023
    Assignee: THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Jaime Christopher Grunlan, Ryan J. Smith
  • Publication number: 20230108381
    Abstract: Methods for disinfecting a surface are provided which include contacting a surface with a solution comprising Fe(VI)O42?, thereby disinfecting the surfaces. In some cases, the surface to be contacted with the solution is in a space suitable for human occupancy and the surface is arranged in the ambient of the space. In addition, solutions comprising Fe(VI)O42? are provided. The solutions may additionally include a hypohalite salt and a surfactant.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Applicants: THE TEXAS A&M UNIVERSITY SYSTEM, The United States Government as Represented by the Department of Veterans Affairs
    Inventors: Virender K. SHARMA, Chetan JINADATHA
  • Publication number: 20230100511
    Abstract: Disclosed are various embodiments for optimized sensor deployment and fault detection in the context of agricultural irrigation and similar applications. For instance, a computing device may execute a genetic algorithm (GA) routine to determine an optimal sensor deployment scheme such that a mean-time-to-failure (MTTF) for the system is maximized, thereby improving communication of sensor measurements. Moreover, in various embodiments, a centralized fault detection scheme may be employed and a soil moisture of a field can be determined by statistically inferring soil moistures at locations of faulty nodes using spatial and temporal correlations.
    Type: Application
    Filed: October 19, 2022
    Publication date: March 30, 2023
    Applicant: The Texas A&M University System
    Inventors: Yanxiang YANG, Jiang HU, Dana O. PORTER, Thomas H. MAREK, Charles C. HILLYER, Lijia SUN
  • Patent number: 11613603
    Abstract: An embodiment includes a platform shape memory polymer system. Such an embodiment exhibits a blend of tunable, high performance mechanical attributes in combination with advanced processing capabilities and good biocompatibility. A post-polymerization crosslinking synthetic approach is employed that combines polyurethane and thiol-ene synthetic processes. Other embodiments are described herein.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: March 28, 2023
    Assignees: Lawrence Livermore National Security, LLC, The Texas A&M University System
    Inventors: Keith Hearon, Landon D. Nash, Thomas Wilson, Duncan J. Maitland, Mark A. Wierzbicki