Patents Assigned to The Regents of the University of Colorado
  • Publication number: 20220371953
    Abstract: Methods of forming cement pastes, methods of forming concrete, and methods of forming other compositions using mineral particles formed from the one or more of biomineralizing microorganisms and biomineralizing microorganisms. Desired features, such as size and morphology, can be controlled by controlling growth parameters of the biomineralizing microorganisms and biomineralizing microorganisms.
    Type: Application
    Filed: October 30, 2020
    Publication date: November 24, 2022
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Wilfred V. Srubar, III, Sarah Lynn Williams, Jeffrey Cameron, Mija Hubler, Sherri Cook, Aparna Nagarajan, Chelsea Heveran
  • Patent number: 11508951
    Abstract: An aspect of the present disclosure is a system that includes a first deposition system that includes a first cylinder having a first outer surface configured to hold a first substrate, a first spray nozzle configured to receive at least a first fluid, and a first fiber nozzle configured to receive at least a second fluid, where the first spray nozzle is configured to operate at a first voltage, the first fiber nozzle is configured to operate at a second voltage, the first cylinder is configured to be electrically connected to ground, the first spray nozzle is configured to apply onto the substrate a first plurality of at least one of particles or droplets from the first fluid, the first fiber nozzle is configured to apply onto the substrate a first fiber from the second fluid, and the first plurality of particles or droplets and the first fiber combine to form a first composite layer on the substrate.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: November 22, 2022
    Assignees: Alliance for Sustainable Energy, LLC, The Regents of the University of Colorado, a Body Corporate
    Inventors: Chunmei Ban, Simon Elnicki Hafner, Se-Hee Lee
  • Publication number: 20220363597
    Abstract: Methods of forming synthetic aluminosilicate material are disclosed. Exemplary methods include forming a polymer solution, adding an aluminum precursor to the polymer solution, adding a silicon precursor to the polymer solution, forming a gel from the polymer solution, calcining the gel to form an aluminosilicate powder, and grinding the aluminosilicate powder to form ground aluminosilicate material. The synthetic aluminosilicate material can be used in the formation of cement and concrete.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 17, 2022
    Applicant: The Regents of the University of Colorado, a body corporated
    Inventors: Wilfred V. Srubar, III, Juan Pablo Gevaudan, Jacqueline D. Wallat-Pullara
  • Patent number: 11499128
    Abstract: An organ-on-chip apparatus includes a first fluid channel, a second fluid channel, and an interface. Respective portions of the first fluid channel and the second fluid channel may extend parallel to and adjacent each other, and the interface may be disposed between the respective portions of the first fluid channel and the second fluid channel such that fluid exchange between the first fluid channel and the second fluid channel is via the interface. The first and second fluid channels may be defined in an extracellular matrix material.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 15, 2022
    Assignee: The Regents of the University of Colorado
    Inventors: Kambez Hajipouran Benam, Alex Kaiser
  • Patent number: 11502542
    Abstract: A high performance kilowatt-scale large air-gap multi-modular capacitive wireless power transfer (WPT) system is provided for electric vehicle (EV) charging. In one particular implementation, the multi-modular system achieves high power transfer while maintaining fringing electric fields within prescribed safety limits. The fringing fields are reduced using near-field phased-array field-focusing techniques, wherein the adjacent modules of the multi-modular system are out-phased with respect to one another. The inter-module interactions in this multi-modular system can be modeled, and an approach to eliminate these interactions in a practical EV charging environment is provided. To illustrate one example implementation, a prototype 1.2-kW 6.78-MHz 12-cm air-gap multi-modular capacitive WPT system comprising two 600-W modules is provided. This prototype system achieves 21.2 kW/m2 power transfer density and a peak efficiency of 89.8%.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 15, 2022
    Assignee: The Regents of the University of Colorado
    Inventors: Khurram K Afridi, Brandon Regensburger, Sreyam Sinha, Ashish Kumar, Zoya Popovic
  • Publication number: 20220357116
    Abstract: Polymer-based selective radiative cooling structures are provided which include a selectively emissive layer of a polymer or a polymer matrix composite material. Exemplary selective radiative cooling structures are in the form of a sheet, film or coating. Also provided are methods for removing heat from a body by selective thermal radiation using polymer-based selective radiative cooling structures.
    Type: Application
    Filed: June 24, 2022
    Publication date: November 10, 2022
    Applicants: The Regents of the University of Colorado, A Body Corporate, University of Wyoming
    Inventors: Ronggui YANG, Xiaobo YIN, Gang TAN, Dongliang ZHAO, Yaoguang MA, Yao ZHAI
  • Patent number: 11493749
    Abstract: A tunable optical electrowetting element having a liquid-liquid interface shape controlled by an applied voltage. Circuitry for applying a voltage to the electrowetting element is configured to apply a shaped voltage signal comprising a first fast-rising signal combined with a second fast-rising signal. The second signal is selected to damp oscillations in the liquid-liquid interface caused by the first signal.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: November 8, 2022
    Assignee: Regents of the University of Colorado, a body corporate
    Inventors: Juliet T. Gopinath, Victor M. Bright, Mo Zohrabi, Omkar D. Supekar, Robert H. Cormack, Wei Yang Lim
  • Patent number: 11496045
    Abstract: The present disclosure provides methods and circuits of multi-output hybrid voltage regulators that generate multiple lower level DC voltages lower than the magnitude of an input voltage provided to an input node of the regulator. The disclosed methods and circuits can be applied to today's Large conversion ratio DC-DC converters that allow them to support same power conversion functionality for multiple output voltages with one core switched capacitor network sharing passive components and switches with less voltage ratings, and therefore, reduce the implementation space to save cost as well as improve efficiency. Sample applications include, but are not limited to, PoL converters for data centers and telecommunication systems with better efficiency and compactness for higher conversion ratio.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: November 8, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE
    Inventors: Ratul Das, Hanh-Phuc Le
  • Patent number: 11491111
    Abstract: The present invention relates generally to the field of immunogenic compositions containing volatile salts. In certain embodiments, compositions and methods disclosed herein relate to producing and using novel combinations to create frozen immunogenic agents bound to adjuvant having improved formulations and improved consistency of distribution of adjuvant for storage and subsequent delivery to a subject in need thereof.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: November 8, 2022
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Kimberly Hassett, Pradyot Nandi, John Carpenter, Theodore Randolph
  • Publication number: 20220346943
    Abstract: A modular IOL system including intraocular primary and secondary components, which, when combined, form an intraocular optical correction device, wherein the secondary component is placed on the primary component within the perimeter of the capsulorhexis, thus avoiding the need to touch or otherwise manipulate the capsular bag. The secondary component may be manipulated, removed, and/or exchanged for a different secondary component for correction or modification of the optical result, on an intra-operative or post-operative basis, without the need to remove the primary component and without the need to manipulate the capsular bag. The primary component may have haptics extending therefrom for centration in the capsular bag, and the secondary component may exclude haptics, relying instead on attachment to the primary component for stability. Such attachment may include actuatable interlocking members.
    Type: Application
    Filed: July 1, 2022
    Publication date: November 3, 2022
    Applicants: Alcon Inc., The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. KAHOOK, Naresh MANDAVA, Glenn SUSSMAN, Paul MCLEAN, Robert E. ATKINSON
  • Patent number: 11486421
    Abstract: Hydraulically-amplified, self-healing, electrostatic transducers that harness electrostatic and hydraulic forces to achieve various actuation modes. Electrostatic forces between electrode pairs of the transducers generated upon application of a voltage to the electrode pairs draws the electrodes in each pair towards each other to displace a liquid dielectric contained within an enclosed internal cavity of the transducers to drive actuation in various manners. The electrodes and the liquid dielectric form a self-healing capacitor whereby the liquid dielectric automatically fills breaches in the liquid dielectric resulting from dielectric breakdown. Due to the resting shape of the cavity, a zipping-mechanism allows for selectively actuating the electrodes to a desired extent by controlling the voltage supplied.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: November 1, 2022
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Christoph Matthias Keplinger, Eric Lucas Acome, Nicholas Alexander Kellaris, Shane Karl Mitchell, Timothy G. Morrissey
  • Publication number: 20220340487
    Abstract: Acid-resistant composite materials and methods of forming acid resistant composite materials are disclosed. The acid resistant composite materials can include one or more monovalent, divalent, or polyvalent cationic metals. The acid resistant composite materials can be used, for example, in the formation of concreate or as a coating for concrete.
    Type: Application
    Filed: August 11, 2020
    Publication date: October 27, 2022
    Applicant: The Regents of the University of Colorado, a body cor
    Inventors: Wilfred V. Srubar, III, Juan Pablo Gevaudan
  • Patent number: 11479620
    Abstract: A photoinitiated polymerizable composition for 3D printing, the polymerizable composition comprising a nanogel component that comprises nanogel particles, wherein the nanogel particles comprise a copolymer with polymerizable reactive groups suitable for reacting with each other or a reactive diluent monomer, a reactive oligomer, a resin, or a combination thereof that is present in the polymerizable composition upon photoinitiation, wherein the nanogel component has a glass transition temperature that is in a range of about ?50 C and about 20 C and an average molecular weight that is in a range of about 10 kg/mol and about 100 kg/mol, and wherein the nanoparticles have an average hydrodynamic radius that is in a range of 1 nm to about 5 nm.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 25, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO
    Inventors: Jeffrey W. Stansbury, Parag K. Shah, Robert R. McLeod
  • Patent number: 11480560
    Abstract: A system comprising a respirator, a biochip, and an atomizer for studying respiratory pathogens. The respirator of the system is configured to create breathe-mimicking air movement, the biochip comprises an airway lumen in fluid communication with the respirator, and the atomizer is in fluid communication with the airway lumen of the biochip, according to various embodiments. The atomizer may be configured to generate droplets of a respiratory pathogen (e.g., from liquid inoculum). In various embodiments, the breath-mimicking air movement comprises air volume as a function of time, wherein the respirator is configured to generate breathing cycles.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: October 25, 2022
    Assignee: The Regents of the University of Colorado, A Body Corporate
    Inventors: Kambez Hajipouran Benam, Brian Frazier Niemeyer, Alexander Joseph Kaiser
  • Patent number: 11478367
    Abstract: Systems and methods for postural control of a multi-function prosthesis are provided. Various embodiments provide for a postural controller that use EMG signals to drive a point in a posture space and outputs continuously varying joint angles for a powered prosthetic hand. The postural controller can include an EMG signal processing unit to receive signals from electrodes for processing (e.g., band pass filtering, rectification, root mean square averaging, dynamic tuning, etc.). The processed EMG signals can then be combined or converted to produce a point in the postural control domain. The PC domain map defines the posture that corresponds to each PC cursor coordinate. This map can have limitless possible postures and limitless possible positions of the postures. The Joint Angle Transform converts the PC cursor coordinate into the joint angle array which is sent to the prosthetic hand thereby creating more natural movements.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 25, 2022
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Jacob Segil, Richard Weir
  • Patent number: 11481979
    Abstract: Systems and methods are described for mobile and augmented reality-based depth and thermal fusion scan imaging. Some embodiments of the present technology use sophisticated techniques to fuse information from both thermal and depth imaging channels together to achieve synergistic effects for object recognition and personal identification. Hence, the techniques used in various embodiments provide a much better solution for, say, first responders, disaster relief agents, search and rescue, and law enforcement officials to gather more detailed forensic data. Some embodiments provide a series of unique features including small size, wearable devices, and ability to feed fused depth and thermal streams into AR glasses. In addition, some embodiments use a two-layer architecture for performing device local fusion and cloud-based platform for integration of data from multiple devices and cross-scene analysis and reconstruction.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: October 25, 2022
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Min-Hyung Choi, Shane Transue
  • Patent number: 11480736
    Abstract: A fiber-to-chip coupler includes a substrate, a waveguide on a top surface of the substrate, an optical fiber axially aligned to the waveguide, and a cap. The waveguide has a uniform region with uniform width and a tapered-waveguide region having a width that adiabatically increases from a minimum width to the uniform width. The optical fiber has a tapered fiber tip having a minimum core diameter, a cylindrical section having a maximum core diameter, and a tapered-fiber section therebetween. The optical fiber is located at least in part above the tapered-waveguide region, and has a core diameter that adiabatically decreases within a taper length of the tapered-fiber section. The cap extends from the tapered fiber tip toward the cylindrical section, is formed of a second material having a cap refractive index that exceeds a refractive index of the optical fiber, and includes a cap-region disposed on the tapered-waveguide region.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: October 25, 2022
    Assignees: The Regents of the University of Colorado, a body corporate, Government of the United States of America, as represented by the Sec. of Commerce
    Inventors: Saeed Khan, Jeffrey Shainline
  • Patent number: 11479772
    Abstract: Improved compositions and methods for treating a disease or disorder through target exon skipping, and preferably muscular dystrophy by administering antisense thiomorpholino molecules capable of binding to a selected target site in the human dystrophin gene to induce exon skipping to produce a functional Dystrophin protein.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: October 25, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO
    Inventors: Marvin Caruthers, Sibasish Paul, Rakesh N. Veedu, Katarzyna Jastrzebska, Heera Krishna
  • Publication number: 20220331094
    Abstract: Modular IOL systems including a base and a lens, wherein the lens includes fixed and actuatable tabs for connection to the base. The modular IOL allows for the lens to be adjusted or exchanged while leaving the base in place, either intra-operatively or post-operatively. Drug delivery capabilities and/or sensing capabilities may be incorporated into the base. Injector devices may be used to facilitate placement of the base and the lens sequentially or simultaneously into the eye.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicants: Alcon Inc., The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. KAHOOK, Glenn SUSSMAN, Paul McLEAN, Andrew SCHIEBER
  • Patent number: 11473135
    Abstract: Disclosed herein is a multiplexed design with three-dimensional plasmonic nanofocusing and confinement of light, demonstration of reproducible and robust single-molecule optical fingerprints using two complementary vibrational spectroscopy techniques (infrared and Raman spectroscopy), identification of respective vibrational modes which uniquely fingerprint the biomolecular species, and facile differentiation of respective fingerprints in DNA mixtures, as well as epigenetic modifications. While the nanometer scale mode volumes still prevent single letter identification of DNA sequence, we show an alternative method for identifying A, T, G, C DNA nucleotides in “k-mers” using sequences of these blocks as a unique and high-throughput alternative to single letter sequences (similar to binary and hexadecimal systems). Furthermore, additivity shown in single-molecule DNA mixtures and robust optical signatures can also be used in a raster-type step scan to identify single letter sequences.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 18, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE
    Inventors: Prashant Nagpal, Manjunatha Sagar Dodderi