Patents Assigned to The Trustees of the University of Pennsylvania
  • Patent number: 11752321
    Abstract: A method and device are provided for non-blood contact mechanically assisting an injured (e.g., infarcted) ventricle by coupling an inflatable bladder or other volume adjustable device to the injured ventricle and selectively inflating the bladder or increasing the size of the volume in systole to apply force against the injured ventricle and deflating the bladder or reducing the size of the volume in diastole to remove force against the injured ventricle. When no mechanical assistance is being provided to the injured ventricle, the inflatable bladder or volume adjustable device is preferably maintained at a predetermined pressure so as to selectively stiffen the injured tissue and alter ventricular geometry a desired amount.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: September 12, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: James J Pilla, Robert C Gorman, Joseph H Gorman, III
  • Patent number: 11747346
    Abstract: The present disclosure relates to the identification and use of biomarkers (e.g., analytes, analyte profiles, or markers (e.g., gene expression and/or protein expression profiles)) with clinical relevance to cytokine release syndrome (CRS).
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 5, 2023
    Assignees: Novartis AG, The Trustees of the University of Pennsylvania
    Inventors: Alfred Garfall, Alex Ganetsky, Saar Gill, Simon Lacey, Jan J. Melenhorst, David Teachey, Eric Lancaster, Adam David Cohen, Pamela Shaw
  • Publication number: 20230272419
    Abstract: Provided herein are nucleic acid molecules, vectors, and recombinant AAV comprising an inducible gene expression system. The system includes a transgene encoding a gene product operably linked to expression control sequences comprising a promoter; an activation domain comprising a canine or feline transactivation domain and a FKBP12-rapamycin binding (FRB) domain of canine or feline FKBP12-rapamycin-associated protein (FRAP); a DNA binding domain comprising a zinc finger homeodomain (ZFHD) and one, two or three FK506 binding protein domain (FKBP) subunit genes; and at least 8 copies of the binding site for ZFHD (8XZFHD) followed by a minimal IL2 promoter. The presence of an effective amount of a rapamycin or a rapalog induces expression of the transgene in a host cell.
    Type: Application
    Filed: July 26, 2021
    Publication date: August 31, 2023
    Applicant: The Trustees of the University of Pennsylvania
    Inventors: James M. Wilson, Christian Hinderer, Makoto Horiuchi
  • Publication number: 20230273223
    Abstract: The present invention relates to a panel of inflammasone biomarkers for detecting exposure to ionizing radiation and/or for determining absorbed dose of ionizing radiation in a subject exposed thereto.
    Type: Application
    Filed: August 5, 2021
    Publication date: August 31, 2023
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Melpo CHRISTOFIDOU-SOLOMIDOU, Shampa Chatterjee, Thais Sielecki-Dzurd, Ralph Pietrofesa
  • Patent number: 11738047
    Abstract: The present disclosure provides modified immune cell (e.g., modified T cell) comprising an exogenous T cell receptor (TCR) having specificity for NY-ESO-1. The present disclosure provides modified immune cells or precursors thereof (e.g., modified T cells) comprising an exogenous TCR and a switch receptor. Gene edited modified cells are also provided, such that the expression of one or more of an endogenous T-cell receptor gene (e.g., TRAC, TRBC) or an endogenous immune checkpoint gene (e.g., PD-1 or TIM-3) is downregulated.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 29, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Yangbing Zhao, Xiaojun Liu
  • Patent number: 11738004
    Abstract: Provided are compositions for inhibiting a biological activity of an aldo-keto reductase family 1, member C3 (AKR1C3) polypeptide. In some embodiments, the compositions are indomethacin derivatives that are AKR1C3-specific inhibitors. Also provided are methods for producing disclosed indomethacin derivatives that substantially lack cyclooxygenase inhibitory activity but that have AKR1C3 inhibitory activity, methods for inhibiting AKR1C3 polypeptide biological activities, and methods for treating prostate tumors in subjects.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: August 29, 2023
    Assignees: Vanderbilt University, The Trustees of the University of Pennsylvania
    Inventors: Lawrence J. Marnett, Andy J. Liedtke, Trevor M. Penning, Adegoke O. Adeniji, Michael C. Byrns
  • Patent number: 11732246
    Abstract: Viral vectors comprising engineered hOTC DNA and RNA sequences are provided which when delivered to a subject in need thereof are useful for treating hyperammonemia, ornithine transcarbamylase deficiency and symptoms associated therewith. Also provided are methods of using hOTC for treatment of liver fibrosis and/or cirrhosis in OTCD patients by administering hOTC.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: August 22, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Lili Wang, James M. Wilson
  • Patent number: 11732245
    Abstract: A two-step chromatography purification scheme is described which selectively captures and isolates the genome-containing rAAV vector particles from the clarified, concentrated supernatant of a rAAV production cell culture. The process utilizes an affinity capture method performed at a high salt concentration followed by an anion exchange resin method performed at high pH to provide rAAV vector particles which are substantially free of rAAV intermediates.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: August 22, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Martin Lock, Mauricio Alvira
  • Patent number: 11732226
    Abstract: A microphysiological platform described herein includes a fluidic synthesizer with a first fluid input selectively coupleable to a source of a first input fluid solution and a second fluid input selectively coupleable to a source of a second input fluid solution. The fluidic synthesizer further includes a fluid output. The microphysiological platform further includes a fluid addressing system with a fluid input fluidically coupled to the fluidic synthesizer fluid output. The fluid addressing system further includes a first fluid output and a second fluid output. The microphysiological platform further includes a first microphysiological device with a fluid input fluidically coupled to the first fluid output of the fluid addressing system and a second microphysiological device with a fluid input fluidically coupled to the second fluid output of the fluid addressing system.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: August 22, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Andrei Georgescu
  • Publication number: 20230255970
    Abstract: The present invention features compositions and methods for treating proliferative diseases such as cancer (e.g., sarcoma, pancreas, prostate, head and neck, liver, and breast cancer) that inhibit the growth of NF-?B and/or Hippo associated neoplasias.
    Type: Application
    Filed: August 12, 2021
    Publication date: August 17, 2023
    Applicants: The Broad Institute, Inc., The Trustees of the University of Pennsylvania
    Inventors: Tzipora Sarah Karin EISINGER, Gabrielle CIOTTI, Ashley M. FULLER, Mohammad ROHBAN, Anne Carpenter VAN DYK, Shantanu SINGH
  • Publication number: 20230255193
    Abstract: Systems and methods for an ex vivo tissue perfusion apparatus are provided. In certain embodiments, the disclosed subject matter includes a container to store ex vivo tissue, a plurality of tubes containing a perfusate, and a pump which cycles the perfusate through the ex vivo tissue. The perfusion apparatus can be configured for mobility and can be transported to active emergency situations in order to perform mobile perfusion of ex vivo tissues. In certain embodiments, the discloses subject matter contemplates a method for performing mobile profusion of ex vivo tissue in emergency situations, for example, active warzones. In certain embodiments, the profusion apparatus can be used as part of a method of training for doctors in the reattachment of limbs or other extremities that have been amputated.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 17, 2023
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Matthew Winterton, Lawrence Scott Levin, Edward Cantu
  • Patent number: 11723969
    Abstract: Nucleic acid molecules and compositions comprising one or more nucleic acid sequences that encode a consensus filovirus immunogen including a consensus Marburgvirus filovirus glycoprotein MARV GP immunogen, a consensus Ebolavirus Sudan filovirus glycoprotein SEBOV GP immunogen and a consensus Ebolavirus Zaire glycoprotein ZEBOV GP immunogen are disclosed. The coding sequences optionally include operable linked coding sequence that encode a signal peptide. Immunomodulatory methods and methods of inducing an immune response against filovirus, particularly Marburgvirus, Ebolavirus Sudan and Ebolavirus Zaire are disclosed. Method of preventing filovirus infection, particularly infection by Marburgvirus, Ebolavirus Sudan and Ebolavirus Zaire and methods of treating individuals infected with filovirus infection, particularly infection by Marburgvirus, Ebolavirus Sudan and Ebolavirus Zaire are disclosed. Consensus filovirus proteins are disclosed.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: August 15, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: David B. Weiner, Devon Shedlock
  • Patent number: 11723989
    Abstract: Provided herein is a recombinant AAV (rAAV) comprising an AAV capsid and a vector genome packaged therein, wherein the vector genome comprises an AAV 5? inverted terminal repeat (ITR), an engineered nucleic acid sequence encoding a functional human N-acetyl-alpha-glucosaminidase (hNAGLU), a regulatory sequence which direct expression of hNAGLU in a target cell, and an AAV 3? ITR. Also provided is a pharmaceutical composition comprising a rAAV as described herein in a formulation buffer, and a method of treating a human subject diagnosed with MPS IIIB.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: August 15, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: James M. Wilson, Christian Hinderer, Juliette Hordeaux
  • Patent number: 11717795
    Abstract: A cell bag rotator is constructed to slowly agitate a plurality of cell bags by rotation along a rotation axis that is at least partially horizontal. The cell bag rotator comprises a plurality of plates to which a respective cell bag is attached. The cell bag rotator is suitable for mixing cells with particles for performing various types of subsequent cell therapy processes on the cells.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: August 8, 2023
    Assignees: Novartis AG, The Trustees of the University of Pennsylvania
    Inventors: Thomas Callahan, Charles Duffy, Jr.
  • Patent number: 11718835
    Abstract: A two-step chromatography purification scheme is described which selectively captures and isolates the genome-containing rAAV vector particles from the clarified, concentrated supernatant of a rAAV production cell culture. The process utilizes an affinity capture method performed at a high salt concentration followed by an anion exchange resin method performed at high pH to provide rAAV vector particles which are substantially free of rAAV intermediates.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: August 8, 2023
    Assignee: Ths Trustees of the University of Pennsylvania
    Inventors: Martin Lock, Mauricio Alvira
  • Patent number: 11718685
    Abstract: The present invention provides compositions and methods for treating cancer in a human. The invention relates to targeting the stromal cell population in a tumor microenvironment. For example, in one embodiment, the invention provides a composition that is targeted to fibroblast activation protein (FAP). The invention includes a chimeric antigen receptor (CAR) which comprises an anti-FAP domain, a transmembrane domain, and a CD3zeta signaling domain.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: August 8, 2023
    Assignees: The Trustees of the University of Pennsylvania, The Wistar Institute of Anatomy and Biology
    Inventors: Carl H. June, Ellen Pure, Liang-Chuan Wang, Steven Albelda, John Scholler
  • Publication number: 20230240672
    Abstract: Devices and methods for affixing reinforcing material to a fascial incision in an abdominal wall to reinforce and augment closures thereof. The device includes first and second arms, each having a proximal end and a distal end extending away from a housing with a length therebetween. The distal end of the first arm is spaced from the distal end of the second arm such that the first and second arms are engageable with reinforcing material on opposing sides of a fascial incision. One or more fixation elements are deployable from the distal end of at least one of the first and second arms to affix the reinforcing material on opposing sides of the fascial incision.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 3, 2023
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: John P. Fischer, Jonathan Sanchez
  • Patent number: 11713450
    Abstract: A two-step chromatography purification scheme is described which selectively captures and isolates the genome-containing rAAV vector particles from the clarified, concentrated supernatant of a rAAV production cell culture. The process utilizes an affinity capture method performed at a high salt concentration followed by an anion exchange resin method performed at high pH to provide rAAV vector particles which are substantially free of rAAV intermediates.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: August 1, 2023
    Assignee: Ths Trustees of the University of Pennsylvania
    Inventors: Martin Lock, Mauricio Alvira
  • Patent number: 11713449
    Abstract: A two-step chromatography purification scheme is described which selectively captures and isolates the genome-containing rAAV vector particles from the clarified, concentrated supernatant of a rAAV production cell culture. The process utilizes an affinity capture method performed at a high salt concentration followed by an anion exchange resin method performed at high pH to provide rAAV vector particles which are substantially free of rAAV intermediates.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: August 1, 2023
    Assignee: Ths Trustees of the University of Pennsylvania
    Inventors: Martin Lock, Mauricio Alvira
  • Patent number: 11708532
    Abstract: Methods for colloidal particle manipulation mediated by an elastic fluid responsive to changes in boundary conditions, including methods of controlling motion of colloidal particles using wavy wall boundary conditions. Methods for driving transitions in topological defect configurations of colloidal particles using wavy wall boundary conditions.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: July 25, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Kathleen J Stebe, Francesca Serra, Yimin Luo