Patents Assigned to The Trustees of the University of Pennsylvania
  • Patent number: 11639425
    Abstract: A method of producing a nanocomposite film includes generating a bilayer film including at least a first layer of at least one nanoparticle and a second layer of at least one material and annealing the bilayer film. A uniform nanocomposite film includes a plurality of nanoparticles dispersed in a polymer matrix, wherein the plurality of nanoparticles form at least 60% by volume of the polymer nanocomposite film.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: May 2, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Daeyeon Lee, Yun-Ru Huang, Shu Yang, Dengteng Ge
  • Patent number: 11638747
    Abstract: Disclosed herein are nucleic acid molecules comprising one or more nucleic acid sequences that encode a mutated WT1 antigen. Vectors, compositions and vaccines comprising one or more nucleic acid sequences that encode a mutated WT1 antigen are disclosed. Methods of treating an individual who has a WT1-expressing tumor and methods of preventing a WT1-expressing tumor are disclosed. Mutated WT1 antigen is disclosed.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 2, 2023
    Assignees: The Trustees of the University of Pennsylvania, Inovio Pharmaceuticals, Inc.
    Inventors: David B. Weiner, Jian Yan, Jewell Walters
  • Patent number: 11639335
    Abstract: The invention provides novel asymmetric and symmetric bisaminoquinolmes and related compounds, methods of treatment and syntheses. The novel compounds exhibit effective anticancer activity and are useful in the treatment of a variety of autophagy-related disorders.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: May 2, 2023
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Ravi K. Amaravadi, Jeffrey D. Winkler
  • Patent number: 11634700
    Abstract: The present invention includes mutant AID, APOBEC, and Tet enzymes with improved functions. In one aspect the invention provides APOBEC fusion proteins comprising hyperactive deamination activity. In another aspect, the invention provides AID mutant proteins comprising hyperactive deamination activity. In yet another aspect, the invention provides mutant Tet proteins capable of stalling oxidation at a 5-hydroxymethylcytosine (hmC).
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 25, 2023
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Rahul Kohli, Emily Schutsky, Monica Yun Liu
  • Patent number: 11633879
    Abstract: A method for forming a prosthesis comprising a bone-like portion and a cartilage-like portion can comprise additively manufacturing a first positive mold in accordance with a portion of a first three-dimensional model of a portion of a bone. A first negative mold can be formed from the first positive mold. The bone-like portion can be created within the first negative mold. A second positive mold of the bone and a cartilage can be additively manufactured from a second three-dimensional model. A portion of the second three-dimensional model can correspond to a portion of the first three-dimensional model. A second negative mold can be formed from the second positive mold. The bone-like portion can be positioned in the second negative mold so that the second negative mold and the bone-like portion can define a cartilage space that can be filled with a material to form the cartilage-like portion of the prosthesis.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: April 25, 2023
    Assignees: United States Government As Represented By The Department of Veterans Affairs, The Trustees Of The University Of Pennsylvania
    Inventors: Brendan D. Stoeckl, Robert L. Mauck, Hannah Zlotnick, Megan Farrell, Liane Miller, David Steinberg
  • Patent number: 11630052
    Abstract: A high-throughput optofluidic device for detecting fluorescent droplets is disclosed. The device uses time-domain encoded optofluidics to detect a high rate of droplets passing through parallel microfluidic channels. A light source modulated with a minimally correlating maximum length sequences is used to illuminate the droplets as they pass through the microfluidic device. By correlating the resulting signal with the expected pattern, each pattern formed by passing droplets can be resolved to identify individual droplets.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: April 18, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: David A Issadore, Venkata Yelleswarapu
  • Patent number: 11628060
    Abstract: The present disclosure relates to valve replacement devices that are foldable for catheter-based deployment to the site of implantation, as well as systems for the delivery of valve prostheses, including prostheses having the special characteristics of the disclosed valve replacement devices. The devices include highly effective adhering mechanisms for secure and enduring precision implantation. The adhering mechanisms may employ a unique sealing mechanism that includes a cuff that expands slowly whereby the device is not secured in place until the completion of the implantation procedure. The implanted device, optionally together with the cuff, prevents perivalvular leaks and incorporate an appropriate leaflet system for reliable functioning in situ.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: April 18, 2023
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Joseph H. Gorman, III, Robert C. Gorman, Matthew J. Gillespie
  • Patent number: 11629198
    Abstract: Compositions and methods are provided for loading cargoes onto red blood cells. Provided herein are novel antibodies, fragments, fusion proteins and other conjugates which specifically bind red blood cells via RHCE or Band 3.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: April 18, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Carlos H. Villa, Vladimir R. Muzykantov, Donald L. Siegel, Colin Greineder
  • Patent number: 11623974
    Abstract: A method for producing a click-active Janus particle includes combining seed particles with a monomer emulsion to obtain monomer-swollen seed particles; and polymerizing the monomer-swollen seed particles to obtain click-active Janus particles. A method for functionalizing a click-active Janus particle includes combining seed particles with a monomer emulsion to obtain monomer-swollen seed particles; polymerizing the monomer-swollen seed particles to obtain click-active Janus particles; and functionalizing the click-active Janus particles using one or more click chemistry reactions.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: April 11, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Daeyeon Lee, Kathleen Stebe, Laura Bradley
  • Patent number: 11623927
    Abstract: The present disclosure provides compounds of formula (I) or (II) or a pharmaceutically acceptable salt or stereoisomer thereof, wherein Rx-R8 are defined herein. Also provided are compositions comprising a compound described herein and a pharmaceutically effective excipient, methods of stabilizing microtubules in a patient comprising administering to the patient a microtubule-stabilizing amount of a compound described herein, methods of treating cancer in a patient comprising administering to the patient a therapeutically effective amount of a compound described herein, and methods of treating a neurodegenerative disease in a patient comprising administering to the patient a therapeutically effective amount of a compound described herein.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 11, 2023
    Assignees: The Trustees of the University of Pennsylvania, The Regents of the University of California
    Inventors: Kurt R. Brunden, Virginia M. Y. Lee, John Q. Trojanowski, Carlo Ballatore, Killian Oukoloff, Amos B. Smith, III
  • Publication number: 20230107743
    Abstract: Smart dental implant systems and methods for ambulatory dental care are provided. In some embodiments, the disclosed subject matter includes a crown, adapted to mimic a patient's anatomy and location of the smart dental implant system. The crown can include piezoelectric nanoparticles, disposed on a surface of the crown and adapted to generate electricity from a patient's oral motion. In some embodiments, the disclosed subject matter includes an abutment, coupled to the crown. The abutment can include an energy harvesting circuit, operationally coupled to the piezoelectric nanoparticles and adapted to harvest the electricity, and a micro LED array, operationally coupled to the energy harvesting circuit and adapted to photobiomodulate surrounding peri-implant soft tissue.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Applicants: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, TEMPLE UNIVERSITY
    Inventors: Geelsu Hwang, Hye-Eun Kim, Jonathan Korostoff, Albert Kim
  • Patent number: 11617817
    Abstract: The present disclosure provides patterned biomaterials having organized cords and extracellular matrix embedded in a 3D scaffold. According, the present disclosure provides compositions and applications for patterned biomaterials. Pre-patterning of these biomaterials can lead to enhanced integration of these materials into host organisms, providing a strategy for enhancing the viability of engineered tissues by promoting vascularization.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: April 4, 2023
    Assignees: The Trustees of the University of Pennsylvania, Massachusetts Institute of Technology
    Inventors: Christopher S. Chen, Jan D. Baranski, Ritika Chaturvedi, Michael T. Yang, Kelly Stevens, Sangeeta Bhatia
  • Patent number: 11609159
    Abstract: The present subject matter relates to systems, devices, and methods for agricultural sample collection. In one aspect, a sample collection system includes an aerial robotic platform, an arm assembly coupled to the aerial robotic platform and comprising an arm that extends away from the aerial robotic platform, and a sample collector connected to a distal end of the arm, wherein the sample collector is configured to selectively remove one or more samples of agricultural material from a plant to be analyzed.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: March 21, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Daniel Orol, Lukas Vacek, Delaney Vanessa Kaufman, Jnaneshwar Das, R. Vijay Kumar
  • Patent number: 11607125
    Abstract: A method for non-invasive assessment of photoreceptor function in a mammalian subject comprises exposing a subject's eye to a visible light stimulus to initiate an intrinsic reflectance response in one or a population of photoreceptors and capturing multiple images of photoreceptor's intrinsic reflectance response to the stimulus. Patterns of variability in the intrinsic reflectance response of a single photoreceptor or population of photoreceptors are useful in diagnosis and treatment monitoring of an ocular condition, disease, disorder or a response to treatment for said ocular condition, disease or disorder.
    Type: Grant
    Filed: April 20, 2019
    Date of Patent: March 21, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Jessica I. W. Morgan, David H. Brainard, Robert F. Cooper, William S. Tuten
  • Publication number: 20230076977
    Abstract: The present invention provides methods for increasing expression of utrophin in a subject in need thereof, the method comprising administering to the subject a pharmaceutical composition comprising a post-transcriptionally utrophin upregulator compound. The present invention also provides methods for treating a subject having a muscular dystrophy. This invention further provides methods for high-throughput screening for a post-transcriptional utrophin upregulator compound.
    Type: Application
    Filed: January 14, 2021
    Publication date: March 9, 2023
    Applicants: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Tejvir S. KHURANA, Donna M. HURYN
  • Publication number: 20230070731
    Abstract: Compositions and methods for small molecule control of precise base editing are disclosed.
    Type: Application
    Filed: January 20, 2021
    Publication date: March 9, 2023
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Rahul Kohli, Junwei Shi, Kiara Berrios
  • Patent number: 11596679
    Abstract: The present disclosure relates to compositions and methods for inducing an adaptive immune response against Hepatitis C virus (HCV) in a subject. In some embodiments, the present disclosure provides a composition comprising a nucleic acid molecule encoding a HCV antigen, an HCV antigen, an adjuvant, or a combination thereof. For example, in some embodiments, the composition comprises a vaccine comprising a nucleic acid molecule encoding a HCV antigen, an HCV antigen, an adjuvant, or a combination thereof.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 7, 2023
    Assignees: VANDERBILT UNIVERSITY, THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, THE JOHNS HOPKINS UNIVERSITY
    Inventors: James E. Crowe, Jr., Andrew Flyak, Justin Bailey, Stuart Ray, George Shaw
  • Patent number: 11596636
    Abstract: The present invention provides compositions and methods for treating and preventing cancer. The invention comprises an inhibitor of epigenetic regulators, including MLL1, MLL2, MOZ, menin, WDR5, or a combination thereof. In one embodiment, the invention provides a personalized method of treating a cancer as dependent upon its epigenetic signature.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: March 7, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Shelley L. Berger, Xianxin Hua, Morgan Sammons, Jiajun Zhu
  • Patent number: 11597911
    Abstract: This invention relates, inter alia, to compositions of low serum or serum free media and methods for the expansion of T cell populations and methods for using such populations of cells. In some aspects, the invention relates to compositions and methods for the selective expansion of T cell subpopulations.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: March 7, 2023
    Assignees: Life Technologies Corporation, The Trustees of the University of Pennsylvania
    Inventors: Angel M. Varela-Rohena, Melanie B. Andolina, James L. Riley, Andrew Medvec
  • Patent number: 11597778
    Abstract: The present invention relates to compositions and methods of use of anti-ADAMTS13 autoantibodies and fragments thereof. In one aspect, the invention includes a composition comprising an isolated anti-ADAMTS13 autoantibody or fragment thereof. In other aspects, methods are described for generating an in vivo model of thrombotic thrombocytopenic purpura (TTP) comprising introducing at least one anti-ADAMTS13 autoantibody or fragment thereof into a model organism and identifying an anti-autoimmune reagent for treating TTP.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: March 7, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Donald L. Siegel, Stephen Kacir, Eric Ostertag, X. Long Zheng