Patents Assigned to TSMC Solid State Lighting Ltd.
  • Patent number: 9312432
    Abstract: The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a light-emitting diode (LED) die. The LED die is a vertical LED die in some embodiments. The LED die includes a substrate. A p-doped III-V compound layer and an n-doped III-V compound layer are each disposed over the substrate. A multiple quantum well (MQW) layer is disposed between the p-doped III-V compound layer and the n-doped III-V compound layer. The p-doped III-V compound layer includes a first region having a non-exponential doping concentration characteristic and a second region having an exponential doping concentration characteristic. In some embodiments, the second region is formed using a lower pressure than the first region.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 12, 2016
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Ming-Hua Lo, Zhen-Yu Li, Hsing-Kuo Hsia, Hao-Chung Kuo
  • Patent number: 9246068
    Abstract: The present disclosure involves a method. The method includes providing a substrate having a layer disposed thereon. A plurality of light-emitting devices is attached to the layer. A gel is applied over the substrate. The gel covers the plurality of light-emitting devices. The gel is shaped into a plurality of lenses. The lenses each cover a respective one of the light-emitting devices. The light-emitting devices are separated from one another. The substrate and the layer are removed.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: January 26, 2016
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Patent number: 9224636
    Abstract: A method includes forming an opening in a substrate, and the opening completely extends through the substrate. A recast material is formed on sidewalls of the substrate exposed by the opening. A first chemical is applied in the opening to remove the recast material, wherein a residue of the first chemical remains on portions of the sidewalls after the applying of the first chemical. Moreover, A second chemical is applied in the opening to remove the residue of the first chemical, and the second chemical is different from the first chemical.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: December 29, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chyi Shyuan Chern, Hsin-Hsien Wu, Chun-Lin Chang, Hsing-Kuo Hsia, Hung-Yi Kuo
  • Patent number: 9224932
    Abstract: A structure includes a carrier substrate with a first side and a second side opposite the first side. The carrier substrate has a first contact pad and a second contact pad disposed over the first side and a third contact pad and a fourth contact pad disposed over the second side. The carrier substrate further includes a substrate and an insulation film disposed between the substrate and the first, second, third, and fourth contact pads. The structure further includes a first epi-structure and a second epi-structure disposed over the carrier substrate. The structure further includes a first metal element and a second metal element. Moreover, the structure further includes a first through-via and a second through-via. The first through-via and the second through-via extend through the first and second epi-structures respectively.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 29, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chih-Kuang Yu, Hung-Yi Kuo
  • Patent number: 9222640
    Abstract: The present disclosure provides an illumination device. The illumination device comprises a light-emitting diode (LED) device on a substrate, a heat sink and a cap. The heat sink is thermally connected to the LED device. The cap is secured over the substrate and covering the LED device. The cap includes a coating material having diffusion and reflection characteristics, and the coating material is free of being in direct contact with the LED device. The coating material is applied on a first portion of an inner surface of the cap, but not on a second portion of the inner surface of the cap.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 29, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chih-Hsuan Sun, Wei-Yu Yeh, Pei-Wen Ko, Hsueh-Hung Fu
  • Patent number: 9214610
    Abstract: A lighting apparatus includes a first doped semiconductor layer, a light-emitting layer disposed over the first doped semiconductor layer, a second doped semiconductor layer disposed over the light-emitting layer, a first conductive terminal, a second conductive terminal, and a photo-conversion layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. The first conductive terminal and the second conductive terminal each are disposed below the first doped semiconductor layer. The photo-conversion layer is disposed over the second doped semiconductor layer and on side surfaces of the first and second doped semiconductor layers and the light-emitting layer. A bottommost surface of the photo-conversion layer is located closer to the second doped semiconductor layer than bottom surfaces of the first and second conductive terminals.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 15, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Patent number: 9214613
    Abstract: A system and method for manufacturing a light-generating device is described. A preferred embodiment comprises a plurality of LEDs formed on a substrate. Each LED preferably has spacers along the sidewalls of the LED, and a reflective surface is formed on the substrate between the LEDs. The reflective surface is preferably located lower than the active layer of the individual LEDs.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: December 15, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Ding-Yuan Chen, Chia-Lin Yu, Chen-Hua Yu, Wen-Chih Chiou
  • Patent number: 9188288
    Abstract: A lighting apparatus includes a substrate, a plurality of light-emitting dies, a continuous encapsulation structure, and a gel. The plurality of light-emitting dies are disposed on the substrate and spaced apart from one another. The light-emitting dies each are covered with a respective individual phosphor coating conformally. The continuous encapsulation structure has a curved surface disposed over the substrate and encapsulates the light-emitting dies within. The gel is disposed between the encapsulation structure and the phosphor coating for each of the light-emitting dies. The gel contains diffuser particles. The lighting apparatus has a substantially white appearance in an off state when the plurality of light-emitting dies is turned off.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 17, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Hsiao-Wen Lee, Chi-Xiang Tseng, Yu-Sheng Tang, Jung-Tang Chu
  • Patent number: 9184334
    Abstract: A light emitting diode (LED) structure comprises a first dopant region, a dielectric layer on top of the first dopant region, a bond pad layer on top of a first portion the dielectric layer, and an LED layer having a first LED region and a second LED region. The bond pad layer is electrically connected to the first dopant region. The first LED region is electrically connected to the bond pad layer.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: November 10, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Shouli Steve Hsia, Chih-Kuang Yu, Ken Wen-Chien Fu, Hung-Yi Kuo, Hung-Chao Kao, Ming-Feng Wu, Fu-Chih Yang
  • Patent number: 9166129
    Abstract: A lens is formed over one or more light-emitting devices disposed over a substrate. The lens includes a trench that circumferentially surrounds the one or more light-emitting devices. The trench is filled with a phosphor-containing material.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: October 20, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Ching-Yi Chen, Yu-Sheng Tang, Hao-Yu Yang, Hsin-Hung Chen, Tzu-Wen Shih
  • Patent number: 9153739
    Abstract: A device includes a textured substrate having a trench extending from a top surface of the textured substrate into the textured substrate, wherein the trench comprises a sidewall and a bottom. A light-emitting device (LED) includes an active layer over the textured substrate. The active layer has a first portion parallel to the sidewall of the trench and a second portion parallel to the bottom of the trench.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 6, 2015
    Assignee: TSMC SOLID STATE LIGHTING, LTD.
    Inventor: Hsin-Chieh Huang
  • Patent number: 9140421
    Abstract: A lighting device includes a first heat sink having a first surface and a second surface opposite the first surface, a second heat sink having a third surface and a fourth surface opposite the third surface. The third surface of the second heat sink is bonded to the second surface of the first heat sink. The lighting device further includes a plurality of first light emitting diode (LED) modules mounted on the first surface of the first heat sink; and a plurality of second light emitting diode (LED) modules mounted on the fourth surface of the second heat sink. One or more the first LED modules generally radiates lights in a first direction. One or more the second LED modules generally radiates lights in a second direction. The first and second LED modules are covered by respective non-reflective caps. The first LED module and the second LED module are configured to be selectively turned on or off according to a predefined algorithm.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 22, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Wei-Yu Yeh, Pei-Wen Ko
  • Patent number: 9136442
    Abstract: The present disclosure involves a light-emitting diode (LED) packaging structure. The LED packaging structure includes a submount having a substrate and a plurality of bond pads on the substrate. The LED packaging structure includes a plurality of p-type LEDs bonded to the substrate through a first subset of the bond pads. The LED packaging structure includes a plurality of n-type LEDs bonded to the substrate through a second subset of the bond pads. Some of the bond pads belong to both the first subset and the second subset of the bond pads. The p-type LEDs and the n-type LEDs are arranged as alternating pairs. The LED packaging structure includes a plurality of transparent and conductive components each disposed over and electrically interconnecting one of the pairs of the p-type and n-type LEDs. The LED packaging structure includes one or more lenses disposed over the n-type LEDs and the p-type LEDs.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 15, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Jui-Ping Weng, Hsiao-Wen Lee, Chun-Chih Chang, Min-Sheng Wu, Hsin-Hsien Lee
  • Patent number: 9125272
    Abstract: A lighting apparatus includes a board, a first light-emitting diode (LED) bank disposed on the board, a second LED bank disposed on the board, a light detector coupled to the first LED bank, and a driver coupled to the light detector and to each of the first and second LED banks. The first LED bank includes a plurality of first LEDs. The second LED bank includes a plurality of second LEDs, and is electrically coupled to the first LED bank. The light detector is configured to detect an output decay of light from each of the first LEDs. The second LEDs in the second LED bank are initially deactivated and are subsequently activated in response to light output decay of the first LEDs.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: September 1, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventor: Hsin-Chieh Huang
  • Patent number: 9117943
    Abstract: A method of forming a light-emitting diode (LED) device is provided. The method includes steps of providing a first substrate, forming an LED structure on the first substrate, forming a porous layer on the first substrate after forming the LED structure, forming a conductive substrate on the LED structure, and separating the LED structure from the first substrate along the porous layer. The substrate has a doped layer. The forming of the porous layer includes a step of converting the dopes layer to the porous layer.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: August 25, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Ding-Yuan Chen, Chen-Hua Yu, Wen-Chih Chiou
  • Patent number: 9117968
    Abstract: A light-emitting diode structure includes an AuSn or AuIn-containing bonding layer over a substrate, a metal layer disposed over the bonding layer, a p-type doped gallium nitride (p-GaN) layer disposed over the metal layer, a n-type doped gallium nitride (n-GaN) layer approximate the p-GaN layer, a multiple quantum well structure disposed between the n-GaN and p-GaN layers, and a conductive contact disposed on the n-GaN layer. The n-GaN layer includes a rough surface with randomly distributed dips. The nano-sized dips have diameters distributed between about 100 nm and about 600 nm, have a dip density ranging from about 107 grains/cm2 to about 109 grains/cm2, and are spaced from each other with an average spacing S, average diameter D, and a ratio S/D that ranges between about 1.1 and about 1.5. The conductive contact is disposed on some of the nano-sized dips of the rough surface.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 25, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Hsing-Kuo Hsia, Ching-Hua Chiu
  • Patent number: 9105818
    Abstract: The present disclosure involves lighting apparatus. The lighting apparatus includes a first doped semiconductor layer. A light-emitting layer is disposed over the first doped semiconductor layer. A second doped semiconductor layer is disposed over the light-emitting layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. A photo-conversion layer is disposed over the second doped semiconductor layer and over side surfaces of the first and second doped semiconductor layers and the light-emitting layer. The photo-conversion layer has an angular profile.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: August 11, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Ming Lin
  • Patent number: 9099632
    Abstract: A package structure includes: a substrate having a first side and a second side opposite to the first side; a metal layer disposed over at least a portion of the second side of the substrate; a light-reflective layer disposed over the first side of the substrate; and a photonic device bonded to the light-reflective layer from the first side. A segment of the metal layer extends through the substrate from the first side to the second side, and a portion of the substrate is completely enclosed in a cross-sectional view by the metal layer. The package structure is free of a bonding wire over the second side of the substrate.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 4, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chyi Shyuan Chern, Wen-Chien Fu, Hsing-Kuo Hsia, Chih-Kuang Yu, Ching-Hua Chiu, Hung-Yi Kuo
  • Patent number: 9099593
    Abstract: The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 4, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Zhen-Yu Li, Hon-Way Lin, Chung-Pao Lin, Hsing-Kuo Hsia, Hao-Chung Kuo
  • Patent number: 9093618
    Abstract: The present disclosure involves lighting apparatus. The lighting apparatus includes a light-emitting device. The light-emitting device includes a first doped semiconductor layer. A light-emitting layer is disposed over the first doped semiconductor layer. A second doped semiconductor layer is disposed over the light-emitting layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. A photo-conversion layer is coated around the light-emitting device. A lens houses the light-emitting device and the photo-conversion layer within. The lens includes a first sub-layer and a second sub-layer. The first and second sub-layers have different characteristics.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 28, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin