Patents Assigned to TSMC Solid State Lighting Ltd.
  • Publication number: 20140112009
    Abstract: The present disclosure provides a method including providing a light-emitting diode (LED) device (e.g., a LED element and PCB) and a heat sink. The LED device is bonded to the heat sink by applying an ultrasonic energy. In an embodiment, the bonding may form a bond comprising copper and aluminum. The PCB may be a metal core PCB (MC-PCB).
    Type: Application
    Filed: January 13, 2014
    Publication date: April 24, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventor: Wei-Yu Yeh
  • Patent number: 8702278
    Abstract: The present disclosure involves a street light. The street light includes a base, a lamp post coupled to the base, and a lamp head coupled to the lamp post. The lamp head includes a housing and a plurality of LED light modules disposed within the housing. The LED light modules are separate and independent from each other. Each LED light module includes an array of LED that serve as light sources for the lamp. Each LED light module also includes a heat sink that is thermally coupled to the LED. The heat sink is operable to dissipate heat generated by the LED during operation. Each LED light module also includes a thermally conductive cover having a plurality of openings. Each LED is aligned with and disposed within a respective one of the openings.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 22, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Jin-Hua Wang, Hsueh-Hung Fu, Pei-Wen Ko, Chih-Hsuan Sun
  • Publication number: 20140103372
    Abstract: The present disclosure involves a method of packaging light-emitting diodes (LEDs). According to the method, a plurality of LEDs is provided over an adhesive tape. The adhesive tape is disposed on a substrate. In some embodiments, the substrate may be a glass substrate, a silicon substrate, a ceramic substrate, and a gallium nitride substrate. A phosphor layer is coated over the plurality of LEDs. The phosphor layer is then cured. The tape and the substrate are removed after the curing of the phosphor layer. A replacement tape is then attached to the plurality of LEDs. A dicing process is then performed to the plurality of LEDs after the substrate has been removed. The removed substrate may then be reused for a future LED packaging process.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 17, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Publication number: 20140093990
    Abstract: An optical emitter includes a Light-Emitting Diode (LED) on a package wafer, transparent insulators, and one or more transparent electrical connectors between the LED die and one or more contact pads on the packaging wafer. The transparent insulators are deposited on the package wafer with LED dies attached using a lithography or a screen printing method. The transparent electrical connectors are deposited using physical vapor deposition, chemical vapor deposition, spin coating, spray coating, or screen printing and may be patterned using a lithography process and etching.
    Type: Application
    Filed: December 11, 2013
    Publication date: April 3, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Yung-Chang Chen, Hsin-Hsien Wu, Ming Shing Lee, Huai-En Lai, Fu-Wen Liu, Andy Wu
  • Publication number: 20140091329
    Abstract: The present disclosure involves a lighting instrument. The lighting instrument includes a board or substrate, for example, a printed circuit board substrate. The lighting instrument includes a plurality of light-emitting diode (LED) dies disposed on the substrate. The LED dies are spaced apart from one another. Each LED die is covered with a respective individual phosphor coating that is coated around the LED die conformally. Due at least in part to the individual phosphor coatings, the LED dies and the lighting instrument may assume a substantially white appearance in an off state. The lighting instrument also includes an encapsulation structure disposed over the substrate. The encapsulation structure may be a diffuser cap that encapsulates the light-emitting dies within. A diffuser gel fills the space between the encapsulation structure and the LED dies.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Hsiao-Wen Lee, Chi-Xiang Tseng, Yu-Sheng Tang, Jung-Tang Chu
  • Publication number: 20140084244
    Abstract: A vertical Light Emitting Diode (LED) device includes an epi structure with a first-type-doped portion, a second-type-doped portion, and a quantum well structure between the first-type-doped and second-type-doped portions and a carrier structure with a plurality of conductive contact pads in electrical contact with the epi structure and a plurality of bonding pads on a side of the carrier structure distal the epi structure, in which the conductive contact pads are in electrical communication with the bonding pads using at least one of vias and a Redistribution Layer (RDL). The vertical LED device further includes a first insulating film on a side of the carrier structure proximal the epi structure and a second insulating film on a side of the carrier structure distal the epi structure.
    Type: Application
    Filed: December 4, 2013
    Publication date: March 27, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Chih-Kuang Yu, Hung-Yi Kuo
  • Patent number: 8680544
    Abstract: The present disclosure involves a lighting instrument. The lighting instrument includes a board or substrate, for example, a printed circuit board. The lighting instrument also includes a plurality of light-emitting devices disposed on the substrate. The light-emitting devices may be light-emitting diode (LED) dies. The LED dies belong to a plurality of different bins. The bins are categorized based on the light output performance of the LED dies. In some embodiments, the LED dies may be binned based on the wavelength or radiant flux of the light output. The LED dies are distributed on the substrate according to a predefined pattern based on their bins. In some embodiments, the LED dies are bin-mixed in an interleaving manner.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: March 25, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventor: Chih-Lin Wang
  • Publication number: 20140078757
    Abstract: The present disclosure involves a lighting apparatus. The lighting apparatus includes a polygon die. The polygon die includes a plurality of light-emitting diodes (LEDs). Each LED includes a plurality of epi-layers, the epi-layers containing a p-type layer, an n-type layer, and a multiple quantum well (MQW) disposed between the p-type layer and the n-type layer. Each LED includes a p-type electrode and an n-type electrode electrically coupled to the p-type layer and the n-type layer, respectively. The polygon die also includes a submount to which each of the LEDs is coupled. The p-type and the n-type electrodes are located between the submount and the epi-layers. The submount contains a plurality of conductive elements configured to electrically couple at least a portion of the plurality of LEDs in series.
    Type: Application
    Filed: March 8, 2013
    Publication date: March 20, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Kuan-Chun Chen, Hao-Chung Kuo, You-Da Lin, Zhen-Yu Li
  • Publication number: 20140077153
    Abstract: The present disclosure involves a light-emitting device. The light-emitting device includes an n-doped gallium nitride (n-GaN) layer located over a substrate. A multiple quantum well (MQW) layer is located over the n-GaN layer. An electron-blocking layer is located over the MQW layer. A p-doped gallium nitride (p-GaN) layer is located over the electron-blocking layer. The light-emitting device includes a hole injection layer. In some embodiments, the hole injection layer includes a p-doped indium gallium nitride (p-InGaN) layer that is located in one of the three following locations: between the MQW layer and the electron-blocking layer; between the electron-blocking layer and the p-GaN layer; and inside the p-GaN layer.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Zhen-Yu Li, Tzu-Te Yang, Hon-Way Lin, Chung-Pao Lin, Kuan-Chun Chen, Ching-Yu Chen, You-Da Lin, Hao-Chung Kuo
  • Publication number: 20140077152
    Abstract: The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Zhen-Yu Li, Hon-Way Lin, Chung-Pao Lin, Hsing-Kuo Hsia, Hao-Chung Kuo
  • Publication number: 20140077224
    Abstract: The present disclosure involves an apparatus. The apparatus includes a substrate having a front side a back side opposite the front side. The substrate includes a plurality of openings formed from the back side of the substrate. The openings collectively define a pattern on the back side of the substrate from a planar view. In some embodiments, the substrate is a silicon substrate or a silicon carbide substrate. Portions of the silicon substrate vertically aligned with the openings have vertical dimensions that vary from about 100 microns to about 300 microns. A III-V group compound layer is formed over the front side of the silicon substrate. The III-V group compound layer is a component of one of: a light-emitting diode (LED), a laser diode (LD), and a high-electron mobility transistor (HEMT).
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Zhen-Yu Li, Chung-Pao Lin, Hsing-Kuo Hsia, Hao-Chung Kuo, Cindy Huichun Shu, Hsin-Chieh Huang
  • Patent number: 8673666
    Abstract: A device includes a textured substrate having a trench extending from a top surface of the textured substrate into the textured substrate, wherein the trench comprises a sidewall and a bottom. A light-emitting device (LED) includes an active layer over the textured substrate. The active layer has a first portion parallel to the sidewall of the trench and a second portion parallel to the bottom of the trench.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: March 18, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventor: Hsin-Chieh Huang
  • Patent number: 8669722
    Abstract: A light-emitting diode (LED) lamp includes a number of different color LEDs that can be turned on and off in different combinations using an external switch operable by a user. A user or a controller can adjust the color temperature of light output by the lamp. The color temperature change may be a user preference and can compensate for decreased phosphor efficiency over time.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 11, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Wei-Yu Yeh, Chih-Hsuan Sun
  • Patent number: 8668366
    Abstract: The present disclosure provides an illumination device. The illumination device includes a cap structure. The cap structure is partially coated with a reflective material operable to reflect light. The illumination device includes one or more lighting-emitting devices disposed within the cap structure. The light-emitting devices may be light-emitting diode (LED) chips. The illumination device also includes a thermal dissipation structure. The thermal dissipation structure is coupled to the cap structure in a first direction. The thermal dissipation structure and the cap structure have a coupling interface. The coupling interface extends in a second direction substantially perpendicular to the first direction. The thermal dissipation structure has a portion that intersects the coupling interface at an angle. The angle is in a range from about 60 degrees to about 90 degrees according to some embodiments.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: March 11, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chih-Hsuan Sun, Wei-Yu Yeh, Hsueh-Hung Fu, Dong Jung Suen
  • Publication number: 20140065740
    Abstract: A photonic device generates light from a full spectrum of lights including white light. The device includes two or more LEDs grown on a substrate, each generating light of a different wavelength and separately controlled. A light-emitting structure is formed on the substrate and apportioned into the two or more LEDs by etching to separate the light-emitting structure into different portions. At least one of the LEDs is coated with a phosphor material so that different wavelengths of light are generated by the LEDs while the same wavelength of light is emitted from the light-emitting structure.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 6, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Hsin-Chieh Huang, Chao-Hsiung Wang
  • Publication number: 20140065741
    Abstract: A method of light-emitting diode (LED) packaging includes coupling a number of LED dies to corresponding bonding pads on a sub-mount. A mold apparatus having concave recesses housing LED dies is placed over the sub-mount. The sub-mount, the LED dies, and the mold apparatus are heated in a thermal reflow process to bond the LED dies to the bonding pads. Each recess substantially restricts shifting of the LED die with respect to the bonding pad during the heating.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 6, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Chyi Shyuan Chern, Hsin-Hsien Wu, Chih-Kuang Yu, Hung-Yi Kuo
  • Publication number: 20140054637
    Abstract: A system and method for manufacturing an LED is provided. A preferred embodiment includes a substrate with a distributed Bragg reflector formed over the substrate. A photonic crystal layer is formed over the distributed Bragg reflector to collimate the light that impinges upon the distributed Bragg reflector, thereby increasing the efficiency of the distributed Bragg reflector. A first contact layer, an active layer, and a second contact layer are preferably either formed over the photonic crystal layer or alternatively attached to the photonic crystal layer.
    Type: Application
    Filed: November 7, 2013
    Publication date: February 27, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Ding-Yuan Chen, Chen-Hua Yu, Wen-Chih Chiou
  • Publication number: 20140054616
    Abstract: The present disclosure involves a method of packaging a light-emitting diode (LED). According to the method, a group of metal pads and a group of LEDs are provided. The group of LEDs is attached to the group of metal pads, for example through a bonding process. After the LEDs are attached to the metal pads, each LED is spaced apart from adjacent LEDs. Also according to the method, a phosphor film is coated around the group of LEDs collectively. The phosphor film is coated on top and side surfaces of each LED and between adjacent LEDs. A dicing process is then performed to slice through portions of the phosphor film located between adjacent LEDs. The dicing process divides the group of LEDs into a plurality of individual phosphor-coated LEDs.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Ming Lin
  • Publication number: 20140055039
    Abstract: An integrated photonic device includes a number of LEDs and a feedback mechanism that measures individual LED light outputs using a photo sensor via a light transmitter disposed in the vicinity of individual LEDs. A controller or driver adjusts a current driven to each LED using the detected values according to various logic based on the device application.
    Type: Application
    Filed: November 13, 2013
    Publication date: February 27, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventor: Hsin-Chieh Huang
  • Patent number: 8659033
    Abstract: A light-emitting diode (LED) device is provided. The LED device has raised semiconductor regions formed on a substrate. LED structures are formed over the raised semiconductor regions such that bottom contact layers and active layers of the LED device are conformal layers. The top contact layer has a planar surface. In an embodiment, the top contact layers are continuous over a plurality of the raised semiconductor regions while the bottom contact layers and the active layers are discontinuous between adjacent raised semiconductor regions.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: February 25, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Ding-Yuan Chen, Chia-Lin Yu, Hung-Ta Lin