Patents Assigned to Umicore
  • Patent number: 8641921
    Abstract: The invention relates to active materials for the manufacture of Li-based batteries. A crystalline nanometric powdered material with formula Lix(M, M?)PO4, in particular LixFePO4 (O?x?1), is disclosed, exhibiting single phase Li insertion/extraction mechanism at room temperature when used as positive electrode material in Li-based batteries. Compared to current LiFePO4, the novel material results in smooth, sloping charge/discharge voltage curve greatly simplifying the monitoring of the state of charge of the batteries. The coexistence of mixed valence states for Fe (i.e. FeIIIVFeII) is believed to increase the electronic conductivity in the room temperature single phase LixFePO4 material, compared to state of the art two-phase materials. This, together with the nanometric size of the particles and their sharp monomodal size distribution, contributes to the exceptional high-rate capability demonstrated in batteries.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: February 4, 2014
    Assignees: Umicore, Centre National de la Recherche Scientifique
    Inventors: Pierre Gibot, Christian Masquelier, Jean-Marie Tarascon, Stephane Levasseur, Philippe Carlach
  • Patent number: 8640440
    Abstract: Disclosed herein is a catalytically active particulate filter, an exhaust gas cleaning system and a process for cleaning the exhaust gases of predominantly stoichiometrically operated internal combustion engines, which are suitable, as well as the gaseous CO, HC and NOx pollutants, also for removing particulates from the exhaust gas. The particulate filter comprises a filter body and a catalytically active coating consisting of two layers. The first layer is in contact with the incoming exhaust gas, the second layer with the outgoing exhaust gas. Both layers contain alumina. The first layer contains palladium. The second layer contains, in addition to rhodium, an oxygen-storing cerium/zirconium mixed oxide.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 4, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Lindner
  • Patent number: 8637692
    Abstract: The present invention is directed to a manufacturing process for 1,2-diamino-cyclohexane-platinum(II) complexes, specifically to a manufacturing process for oxaliplatin. The process is straightforward, economical and applicable to industrial production. It comprises the reaction of (DACH)PtCl2 with silver sulfate (Ag2SO4) and the subsequent reaction of the resulting Pt sulfate complex (DACH)Pt(aq)2SO4 with barium oxalate (BaC2O4) or an equimolar mixture of barium hydroxide and oxalic acid to yield oxaliplatin in high purity with a low silver and low nitrate content.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: January 28, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Néstor Pablo Cid, Miguel Julio Novas, Agustin Alfredo Tomei
  • Patent number: 8628694
    Abstract: The invention relates to active material for the negative electrode of secondary rechargeable lithium batteries, wherein the active material is based on doped or undoped carbon-bearing lithium titanium ramsdellite oxide with general formula Li2Ti3O7 or Li2.28Ti3.43O8. The active material comprises a carbon substituted ramsdellite phase having a general formula Li2?4cCc—Ti3O7, with 0.1<c<0.5, and more than 0.1 mol % of spinel phase having a general formula Li1+xTi2?xO4 with 0<x<0.33.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: January 14, 2014
    Assignees: Umicore, Centre National de la Recherche Scientifique, Universite Montpellier, SAFT Groupe S.A.
    Inventors: Michèle Van Thournout, Laure Monconduit, Claire Villevieille, Josette Olivier-Fourcade, Jean-Claude Jumas, Cécile Tessier
  • Patent number: 8617497
    Abstract: The invention relates to the use of mixed oxides made of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide as catalytically active materials for the selective catalytic reduction of nitrogen oxides with ammonia or a compound that can decompose to form ammonia in the exhaust gas of internal combustion engines in motor vehicles that are predominantly leanly operated, and to compositions or catalysts which contain said mixed oxides in combination with zeolite compounds and/or zeolite-like compounds and are suitable for the denitrogenation of lean motor vehicle exhaust gases in all essential operating states.
    Type: Grant
    Filed: April 16, 2011
    Date of Patent: December 31, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Katja Adelmann, Gerald Jeske, Rainer Domesle, Nicola Soeger, Michael Seyler, Anke Schuler, Thomas R. Pauly, Barry W. L. Southward
  • Patent number: 8614027
    Abstract: The invention relates to a catalyst-coated ion-conducting membrane and a membrane-electrode assembly (MEA) for electrochemical devices, in particular for fuel cells. The catalyst-coated, ion-conducting membrane is provided with a sealing material which is applied in the edge region to one side of the membrane and has a thickness which corresponds to at least the total thickness of the catalyst-coated membrane. Owing to their simple, material-conserving construction, the catalyst-coated ion-conducting membranes and the membrane-electrode assemblies produced therefrom can be manufactured inexpensively. They are used in PEM fuel cells, direct methanol fuel cells (DMFCs), electrolysers and other electrochemical devices.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: December 24, 2013
    Assignee: Umicore AG & Co. KG
    Inventor: Heiko Oschmann
  • Patent number: 8608987
    Abstract: The disclosure relates to positive electrode material used for Li-ion batteries, a precursor and process used for preparing such materials, and Li-ion battery using such material in its positive electrode. The disclosure describes a higher density LiCoO2 positive electrode material for lithium secondary batteries, with a specific surface area (BET) below 0.2 m2/g, and a volumetric median particle size (d50) of more than 15 ?m. This product has improved specific capacity and rate-capability. Other embodiments of the disclosure are an aggregated Co(OH)2, which is used as a precursor, the electrode mix and the battery manufactured using above-mentioned LiCoO2.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: December 17, 2013
    Assignee: Umicore
    Inventors: Zhaohui Chen, Robert Ellenwood
  • Patent number: 8608823
    Abstract: The invention relates to an apparatus and a process for granulating a metal melt. The apparatus substantially comprises a round water tank, into which water is injected in a tangential direction with the aid of a number of nozzles, so that the water in the tank rotates and forms a parabolic surface. The nozzles are arranged such that they are distributed in height and around the circumference of the tank wall. The uppermost nozzle is located in the region of the surface of the water and produces a stream of water or fan of water lying in the surface of the water. For granulating a metal melt, it is poured continuously from a melting crucible into the stream of water or fan of water of the uppermost nozzle.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: December 17, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Veit Koenig, Andreas Huber, Bernd Amend
  • Patent number: 8586757
    Abstract: Disclosed herein are compounds of the formula (I) or (II) in which: L is a neutral ligand; X, X? are anionic ligands; R1 and R2 are, separately, a hydrogen, a C1-C6 alkyl, a C1-C6 perhalogenoalkyl, a aldehyde, a ketone, an ester, a nitrile, an aryl, a pyridinium alkyl, an optionally substituted C5 or C6 pyridinium alkyl, perhalogenoalkyl or cyclohexyl, a Cnh2NY radical 10 with n between 1 and 6 and y an iconic marker, or a radical having the formula: wherein R1 can be a radical of formula (Ibis) when the compound has formula (I) or of formula (IIbis) when the compound has formula (II), R3 is a C1-C6 alkyl, or a C5 or C6 cycloalkyl or a C5 or C6 aryl; R0, R4, R5, R6, R7, R8, R9, R10, R11, are, separately, a hydrogen, C1-C6 alkyl, a C1-C6 perhalogenoalkyl, or a C5 or C6 aryl; wherein R9, R10, R11 can be a heterocycle; X1 is anion. R1 and R2 can form, with the N and the C to which they are attached, a heterocycle.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: November 19, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Marc Mauduit, Isabelle Laurent, Hervé Clavier
  • Publication number: 20130302214
    Abstract: The present invention relates to a diesel particle filter which has a coating active in oxidation catalysis and which is characterized in that said diesel particle filter comprises a material zone which removes platinum traces contained in the exhaust-gas flow, and to the use of said diesel particle filter in the purification of exhaust gases of diesel engines.
    Type: Application
    Filed: April 17, 2013
    Publication date: November 14, 2013
    Applicant: Umicore AG & Co. KG
    Inventor: Umicore AG & Co. KG
  • Patent number: 8568678
    Abstract: The reductive removal of nitrogen oxides from the exhaust gas from internal combustion engines operated predominantly under lean conditionstakes place in a selective catalytic reduction (SCR) of the nitrogen oxides by means of ammonia or a compound which can be decomposed into ammonia as reducing agent. Conventional SCR catalysts typically have a relatively narrow working temperature window, usually 350° C. to 520° C., in which good nitrogen oxide conversions can be achieved with sufficient selectivity. SCR catalyst formulations whose working window is in the temperature range from 150° C. to 350° C. generally not be used at higher temperatures since they oxidize the ammonia required as reducing 18 agent to nitrogen oxides at above 350° C. To cover the entire exhaust gas temperature range typical of vehicles having been operating internal combustion enginesextending from 200° C. to 600° C.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: October 29, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Nicola Soeger, Lothar Mussmann, Ralf Sesselmann, Katja Adelmann, Wolfgang Schneider
  • Patent number: 8569199
    Abstract: Selective catalytic reduction with ammonia or a compound that decomposes to ammonia is a known method for the removal of nitrogen oxides from the exhaust gas of primarily lean-burn internal combustion engines. The vanadium-containing SCR catalysts that have long been generally used for this are characterized by a good conversion profile. However, the volatility of vanadium oxide can, at higher exhaust gas temperatures, lead to the emission of toxic vanadium compounds. Zeolite-based SCR catalysts, which are used in particular in discontinuous SCR systems, constitute a very cost-intensive solution for the problem. A method is proposed by which a homogeneous cerium-zirconium mixed oxide is activated for the SCR reaction in a defined manner by the introduction of sulphur and/or transition metal.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: October 29, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Katja Adelmann, Nicola Soeger, Lothar Mussmann, Marcus Pfeifer, Gerald Jeske
  • Patent number: 8557174
    Abstract: The invention relates to a process for the separation and recovery of non-ferrous metals from zinc-bearing residues, in particular from residues produced by the zinc manufacturing industry. The process comprises the steps of:—subjecting the residue to a flash or agitated bath fuming step, thereby producing an Fe bearing slag and Zn- and Pb-bearing fumes; and—extracting the Zn- and Pb-bearing fumes and valorizing Zn and Pb; characterized in that CaO, SiO2 and MgO are added as a flux before or during the fuming step so as to obtain a final slag composition with: formula (I) all concentrations being expressed in wt %. The invention also relates to a single-chamber reactor for Zn-fuming equipped with one or more submerged plasma torches as heat and gas sources. [ Fe ] [ SiO 2 ] + [ CaO ] [ SiO 2 ] + [ Mg ? O ] 3 > 3.5 ; ? ? 0.1 < [ CaO ] [ SiO 2 ] < 1.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: October 15, 2013
    Assignee: Umicore
    Inventors: Maurits Van Camp, Jonathan Aerts, Benedict Janssens, Sven Santen
  • Patent number: 8557204
    Abstract: Disclosed herein is a layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides being separated in a front and rear portion is disclosed. Provided is a catalytic composite material of a single front and two rear layers in conjunction with a substrate, where each of the layers includes a support, all layers comprise a platinum group metal component, and the rear bottom layer is substantially free of an oxygen storage component (OSC).
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 15, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: John G. Nunan, Raoul Klingmann, Ryan Andersen, Davion Clark, David H. Moser
  • Patent number: 8557203
    Abstract: A device is described which provides thermally durable NO2 generation in conjunction with efficient heat-up performance for filter regeneration, and low temperature HC (hydrocarbon) and CO activity. Importantly, it provides both functions while minimizing PGM (platinum group metals) utilization and its associated impact on catalyst cost.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 15, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Owen Herman Bailey, Matthew Hedgecock, Frank-Walter Schuetze, Anke Woerz
  • Patent number: 8545596
    Abstract: The invention concerns alloyed zinc powders for alkaline batteries and a method to manufacture such powders. The powders are characterized by the presence of particles pierced with at least one hole. This appears to benefit the high drain discharge capacity while preserving the process ability of the powder, and the shelf life and the gassing behavior of the batteries. The invented powders can be manufactured using centrifugal atomization in a cooled, oxygen-depleted atmosphere.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 1, 2013
    Assignee: Umicore
    Inventors: Christophe Henninot, Yvan Strauven
  • Publication number: 20130239555
    Abstract: A catalyst for use in a process for purifying exhaust gas from a gasoline engine of the fuel-direct-injection type that varies, in response to changes in the air-fuel ratio, between a first exhaust-gas state featured by an air-fuel ratio in the vicinity of the stoichiometrical air-fuel ratio, and a second exhaust-gas state that forms a more oxidizing, low-temperature atmosphere and that is featured by an air-fuel ratio greater than the stoichiometrical air-fuel ratio, the catalyst being obtained by causing a noble metal and a rare-earth oxide and/or a transition metal to be carried by or to be mixed with a fire-resistant inorganic oxide.
    Type: Application
    Filed: May 1, 2013
    Publication date: September 19, 2013
    Applicants: Umicore Shokubai USA Inc., Umicore Shokubai Japan Co., Ltd.
    Inventors: Masao HORI, Akihisa OKUMURA, Makoto HORIUCHI
  • Patent number: 8536344
    Abstract: There is disclosed compounds of formula 1, their preparation, intermediates for the preparation and the use of the compounds of the formula 1 as catalysts in various metathesis reactions. The novel metathesis catalysts, which are obtained from readily available precursors, have a high activity and can be used for any type of metathesis reaction.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 17, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Dieter Arlt, Michal Bieniek, Ralf Karch
  • Patent number: 8529853
    Abstract: The present invention relates to application of catalysts for the Selective Catalytic Reduction of oxides of Nitrogen using N-containing reductant. The catalysts are characterized as phase pure lattice oxide materials into which catalytically active cations are incorporated at high levels of dispersion such that conventional analysis reveals a highly phase pure material. The materials are further characterized by high activity, hydrothermal durability and poison tolerance in the intended application.
    Type: Grant
    Filed: March 19, 2011
    Date of Patent: September 10, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Barry W. L. Southward, John G. Nunan
  • Patent number: 8529963
    Abstract: The present invention is directed to a method for preparing colloidal dispersions of precious metal nanoparticles selected from the group consisting of Pt, Au, Pd, Ag, Rh, Ru and mixtures or alloys thereof, and to a method for isolating such precious metal nanoparticles from these colloidal dispersions. The colloidal dispersions are prepared by reducing suitable precious metal precursor compounds in aqueous alkaline solutions at reaction temperatures between 40 and 70° C. and a pH?12.0 in the presence of polysaccharides with average molecular weights (Mw) in the range of 300,000 to 1,000,000. The precious metal nanoparticles are isolated after decomposing the polysaccharide by heating the colloidal dispersions to temperatures >80° C. The nanoparticles can be used for the manufacture of core/shell-type catalyst materials and for electronic, decorative and medical applications.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: September 10, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Dan V. Goia, Benjamin Morrow, Egon Matijevic, Krishna Balantrapu, Brendan P. Farrell