Patents Assigned to Umicore
  • Patent number: 8512912
    Abstract: The invention relates to a membrane electrode unit (MEU) for electrochemical apparatuses, in particular for direct methanol fuel cells (DMFC). The membrane electrode unit contains backings (i.e. gas diffusion layers) on the anode side and cathode side, which have a different water tightness (WT). The anode backing must have a lower water tightness (i.e. a higher water permeability) than the cathode backing, where WTAnode<WTCathode. The anode backing preferably has no compensating layer (microlayer), has a lower content of water repellent (from 2 to 10 wt.-%, based on the total weight) and has a higher total pore volume (VTot) than the cathode backing. The membrane electrode units produced have a substantially improved performance in DMFC fuel cells which are operated with aqueous methanol solution.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: August 20, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Joachim Koehler, Sandra Wittpahl, Holger Dziallas, Christian Eickes
  • Patent number: 8512658
    Abstract: The present invention relates to a method for exhaust gas after-treatment for essentially lean-burn internal combustion engines and also a corresponding advantageous exhaust gas after-treatment system. In particular, the present invention relates to reducing the proportion of the greenhouse gas N20 in the total exhaust gas from a corresponding internal combustion system using at least one NOx storage catalyst as exhaust gas purification element. The objective of the invention is to operate the N20 depletion catalyst located downstream of the NOx storage catalyst under lambda=<1 conditions when the N20 formed by the NOx storage catalyst reaches the N20 depletion catalyst.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: August 20, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Eckhoff, Frank Adam, Christian Lammarck
  • Patent number: 8497622
    Abstract: Energy-saving lamps contain a gas filling of mercury vapor and argon in a gas discharge bulb. Amalgam spheres are used for filling the gas discharge bulb with mercury. A tin amalgam having a high proportion by weight of mercury in the range from 30 to 70% by weight is proposed. Owing to the high mercury content, the amalgam spheres have liquid amalgam phases on the surface. Coating of the spheres with a tin or tin alloy powder converts the liquid amalgam phases on the surface into a solid amalgam having a high tin content. This prevents conglutination of the amalgam spheres during storage and processing.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: July 30, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Georg Ptaschek, Calogero Di Vincenzo
  • Patent number: 8491966
    Abstract: Disclosed herein is a process for coating ceramic honeycomb bodies with a catalyst suspension comprising catalyst components as solids and/or in dissolved form in a carrier liquid. Parallel flow channels run through the honeycomb bodies. The walls of the flow channels have an open pore structure. To coat the channel walls and in particular also the interior surfaces of the pores with the catalyst suspension, the entry and exit end faces of the vertically aligned honeycomb bodies are each brought into contact with a perforated mask, with the perforated masks being arranged so that the open regions of the perforated mask on the one end face are opposite the closed regions of the perforated mask on the other end face and vice versa. The catalyst suspension is then pumped or sucked from below into the honeycomb bodies until it exits at the upper end face.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 23, 2013
    Assignee: Umicore AG & Co. KG
    Inventor: Wolfgang Hasselmann
  • Patent number: 8486309
    Abstract: An active material for a lithium battery electrode comprises a phase having the formula Li2+v?4cCcTi3?wFexMyM?zO7??, in which M and M? are metal ions of groups of 2 to 15 having an ionic radius between 0.5 and 0.8 ? in an octahedral environment, v, w, x, y, z and ? being associated by the relationships: 2?=?v+4w?3x?ny?n?z, with n and n? being the respective formal degrees of oxidation of M and M?; ?0.5?v?0.5; y+z>0; x+y+z=w; and 0<w?0.3; and wherein at least part of the lithium is substituted by carbon according to the relationship 0<c(2+v)/4. The invention also includes a method for synthesizing the active material which comprises mixing and grinding the precursor compounds containing the metal components, carbon and oxygen; heating the mixture in an inert atmosphere at a temperature of 950 to 1050° C. in order to make a ceramic phase; and rapidly cooling the ceramic phase to produce the active material.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: July 16, 2013
    Assignees: Umicore, Centre National de la Recherche Scientifique, Saft Groupe S.A., Universite Montpellier 2
    Inventors: Stéphane Levasseur, Cécile Tessier, Josette Olivier-Fourcade, Laure Monconduit, Costana Ionica-Bousquet, Claire Villevieille, Michèle Van Thournout
  • Patent number: 8476559
    Abstract: Tunnel kilns serve for the thermal treatment of products in a continuous operation within a production process. The tunnel kilns are usually made up of a number of identical kiln segments, each segment having a blower, heating elements for heating up the fresh air and a common exhaust air line. For the treatment of the products, they are made to pass by either on the suction side or the pressure side of the blower. To reduce the overall volume of such kilns and to save energy, it is proposed to arrange the blower inside the kiln in such a way that it produces a circulatory flow transversely to the direction of continuous transport and to transport the products to be dried through the circulatory flow parallel to one another in the direction of continuous transport both on the pressure side and on the suction side of the blower.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: July 2, 2013
    Assignee: Umicore AG & Co. KG
    Inventor: Wolfgang Hasselmann
  • Patent number: 8475753
    Abstract: The present invention relates to an exhaust-gas aftertreatment system which comprises a preferably catalytically active particle filter (wall-flow filter) which is followed in turn by a throughflow monolith (flow-through monolith) which is preferably provided with a catalytically active function. Both components have the same storage functions for gaseous substances present in the exhaust gas of internal combustion engines. The system is suitable in particular for the simultaneous removal of particles and pollutants from the exhaust gas of both predominantly lean-operated internal combustion engines and also of internal combustion engines operated predominantly with a stoichiometric air/fuel mixture. Likewise described is a process for the production and the use of such a system for exhaust-gas aftertreatment.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 2, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Eckhoff, Wilfried Mueller, Joerg-Michael Richter, Stefan Franoschek, Martin Votsmeier
  • Patent number: 8465711
    Abstract: An exhaust gas purification catalyst of the present invention contains at least a precious metal coated with lanthanum-containing alumina. In at least one embodiment, it is possible to provide: an exhaust gas purification catalyst which can (i) have an increase in heat resistance, and (ii) inhibit the precious metal from being mixed in alumina and therefore inhibit the precious metal from forming a solid solution in combination with alumina; and a method for efficiently purifying, by use of the catalyst, an exhaust gas emitted from an internal-combustion engine.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: June 18, 2013
    Assignees: Umicore Shokubai Japan Co., Ltd., Umicore Shokubai USA Inc.
    Inventors: Masanori Ikeda, Kosuke Mikita, Takahiro Ikegami, Yuji Ogino, Hideki Goto
  • Patent number: 8454917
    Abstract: A nitrogen oxide storage catalyst is provided, which has two catalytically active coatings on a support body. The lower coating applied directly to the support body has a nitrogen oxide storage function and includes platinum as a catalytically active component applied to a homogeneous magnesium-aluminum mixed oxide in combination with a nitrogen oxide storage material, in which a nitrogen oxide storage component is likewise present and applied to a homogeneous magnesium-aluminum mixed oxide. The second layer is notable for three-way catalytic activity, and includes palladium applied to aluminum oxide and barium oxide or strontium oxide, but no platinum.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: June 4, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ruediger Hoyer, Stephan Eckhoff, Thomas R. Pauly
  • Patent number: 8455671
    Abstract: The invention relates to ruthenium complexes with a chiral ferrocenyldiphosphine ligand, wherein the ruthenium has the oxidation state (+II) and the chiral ferrocenyldiphosphine ligand has bidentate P—P coordination to the ruthenium. The ruthenium complexes are cyclic and with the ferrocenyldiphosphine ligand have an at least eight-membered ring. The ferrocenyldiphosphine ligands are selected from the group consisting of Taniaphos, Taniaphos-OH and Walphos ligands. A process for preparing the Ru complexes is described. The Rn complexes are used as catalysts for homogeneous asymmetric catalysis for preparing organic compounds.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: June 4, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Albrecht Salzer, Angelino Doppiu, Nadine Langenscheidt, Andreas Rivas-Nass, Ralf Karch, Roland Winde, Stefanie Mayrhofer
  • Patent number: 8448421
    Abstract: A device and process for storing hydrocarbons as part of an exhaust emission control system and diagnosing the state of said device based on the incorporation of reactive metal species within the porous microstructure of the associated hydrocarbon adsorbent.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: May 28, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Owen Herman Bailey, Davion Onuga Clark, David Henry Moser
  • Patent number: 8445403
    Abstract: An oxidation catalyst is described for the exhaust gas purification of utility vehicles with diesel engines, which contains a substrate and a catalytically active coating of platinum, active aluminum oxide and aluminum-silicon mixed oxide. The two oxidic support materials, aluminum oxide and aluminum-silicon mixed oxide, are catalytically activated with platinum, the majority of platinum being present on the active aluminum oxide. The oxidation catalyst is distinguished by good NO oxidation rates together with a high poisoning resistance against sulfur compounds.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: May 21, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Stéphanie Frantz, Frank-Walter Schuetze, Anke Woerz, Gerald Jeske
  • Patent number: 8434329
    Abstract: Apparatus, which is suitable for being surrounded by molten glass, the apparatus having a shank which has at least one at least partially seamless tube consisting of an oxide dispersion-strengthened PGM material, the shank having at least one thickened portion on which an actuating device is arranged.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: May 7, 2013
    Assignee: Umicore AG & Co. KG
    Inventor: Rudolf Singer
  • Patent number: 8431186
    Abstract: To equip a diesel particle filter with a zeolite-containing coating uniformly over the entire length of the particle filter and with a further zeolite-free coating which is applied, from the entry side of the filter, solely up to a specific length of the filter, it is proposed, first, to apply the zeolite-free coating from the entry side of the filter and only thereafter to apply the zeolite-containing coating over the entire length of the filter from the exit side of the filter. As a result of this sequence of coatings, a better adhesive strength of the coatings than when both coatings are applied from the entry side is ensured.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: April 30, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Gerald Jeske, Marcus Pfeifer, Wolfgang Schneider, Franz Dornhaus, Ralf Mueller, Michael Schiffer
  • Patent number: 8425997
    Abstract: The invention relates to polymeric cobalt bearing compounds, in particular for use as metal-rubber adhesion promoters (RAPs) in tires, belts and hoses. Known active substances are a.o. cobalt stearates, naphthenates, resinates, decanoates, boro-decanoates and many other forms of acylates. While these substances appear to enhance the metal-rubber adhesion, all of them also come with significant drawbacks, a.o. linked to the relatively high bioavailability of cobalt in these substances. The invention concerns more particularly a polymer comprising Co-carboxylate sequences, with a Co content of at least 3% by weight, and with a mean molecular weight of more than 2000. Several synthesis methods, allowing to reach relatively high Co concentrations in the polymer, illustrate the invention. The invented polymers show a strongly reduced bioavailability of Co compared to currently available products, as demonstrated by aqueous leaching tests.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: April 23, 2013
    Assignee: Umicore
    Inventors: Eddy Clauwaert, Bert-Jan Kamphuis
  • Patent number: 8418444
    Abstract: Temperature range enabling combustion of high concentration hydrocarbon is enlarged, or high temperature gas is rapidly supplied to a latter part catalyst. Provided is a method for purification of exhaust gas from an internal combustion engine, by using a catalyst for increasing temperature of exhaust gas from an internal combustion engine, wherein hydrocarbon from 1,000 to 40,000 ppm by volume, as converted to methane, to the exhaust gas, is introduced at the upstream side of the catalyst for increasing temperature, along flow of the exhaust gas inside a passage of exhaust gas from the internal combustion engine.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: April 16, 2013
    Assignees: Umicore Shokubai Japan Co., Ltd., Umicore Shokubai USA Inc
    Inventors: Masanori Ikeda, Naohiro Kato
  • Patent number: 8397488
    Abstract: Described is a method for cleaning the exhaust gases of internal combustion engines, which method is suitable for reducing harmful gases and particle emissions. Here, the exhaust gas to be cleaned is conducted, under operating conditions, with a discontinuous profile of the air ratio ? across a wall-flow filter substrate which comprises a catalytically active coating containing one storage material. The storage material is suitable for temporarily storing one or more exhaust-gas components under certain operating conditions and releasing said exhaust-gas components again in a targeted fashion in the event of a suitable change in the operating conditions. The coating is configured such that the component has a gradient of the storage material concentration and/or of the total coating amount, with the highest concentration of the storage material in the longitudinal direction of the component being present on the inflow side.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 19, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Anke Woerz, Wilfried Mueller, Martin Votsmeier, Franz Dornhaus, Martin Roesch
  • Patent number: 8394965
    Abstract: The invention relates to all compounds of the formula (I) or (II) in which: L is a neutral ligand; X, X? are anionic ligands; R1 and R2 are, separately, a hydrogen, a C1-C6 alkyl, a C1-C6 perhalogenoalkyl, a aldehyde, a ketone, an ester, a nitrile, an aryl, a pyridinium alkyl, an optionally substituted C5 or C6 pyridinium alkyl, perhalogenoalkyl or cyclohexyl, a Cnh2NY radical 10 with n between 1 and 6 and y an i8onic marker, or a radical having the formula: wherein R1 can be a radical of formula (Ibis) when the compound has formula (I) or of formula (IIbis) when the compound has formula (II), R3 is a C1-C6 alkyl, or a C5 or C6 cycloalkyl or a C5 or C6 aryl; R0, R4, R5, R6, R7, R8, R9, R10, R11, are, separately, a hydrogen, C1-C6 alkyl, a C1-C6 perhalogenoalkyl, or a C5 or C6 aryl; wherein R9, R10, R11 can be a heterocycle; X1 is anion. R1 and R2 can form, with the N and the C to which they are attached, a heterocycle.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 12, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Marc Mauduit, Isabelle Laurent, Hervé Clavier
  • Patent number: 8394551
    Abstract: The invention relates to a membrane-electrode assembly (MEA) for electrochemical devices, in particular for membrane fuel cells. The membrane-electrode assembly has a semi-coextensive design and comprises an ion-conducting membrane, two catalyst layers and gas diffusion layers of differing sizes on the front side and rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, while the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane. As a result, the ion-conducting membrane has a surface which is not supported by a gas diffusion layer on the front side. The membrane-electrode assembly has, owing to the particular construction, a stable structure which can be handled readily and displays advantages in the sealing of the reactive gases from one another and also in terms of the electrical properties. In particular, the hydrogen penetration current is significantly reduced.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: March 12, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Sandra Wittpahl, Klaus Schaack, Holger Dziallas, Peter Seipel, Günther Vulpius, Bernd Dillmann
  • Patent number: 8394348
    Abstract: Disclosed herein is a layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides being separated in a front and rear portion is disclosed. Provided is a catalytic material of at least two front and two rear layers in conjunction with a substrate, where each of the layers includes a support, all layers comprise a platinum group metal component, and the rear bottom layer is substantially free of a ceria-containing oxygen storage component (OSC).
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 12, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: John G. Nunan, Raoul Klingmann, Ryan Andersen, Davion Clark, David Moser