Patents Assigned to University of Utah
  • Publication number: 20230149061
    Abstract: A tether assembly may be attached to a bone to correct a rotational deformity. The bone may have a growth plate that separates a first section of the bone from a second section of the bone. The tether assembly may have a tether member with a first end, a second end, and a central portion extending between the first end and the second end. The first end may have a closed outer wall that defines and fully bounds a first aperture. The second end may have an open outer wall that defines and partially bounds a second aperture. The open outer wall may define a slot in communication with the second aperture. The first and second ends may be securable to the first and second sections of the bone via coupling members inserted through the first and second apertures and anchored in the first and second sections, respectively.
    Type: Application
    Filed: October 3, 2022
    Publication date: May 18, 2023
    Applicant: University of Utah Research Foundation
    Inventors: Zackery EVANS, T. Wade FALLIN, Peter M. STEVENS
  • Patent number: 11640013
    Abstract: A weather-detecting device (100) can include a substrate (102) and a detection region (106) exposed to an environment within which the weather-detecting device (100) is situated when in use. An array (110) of heating elements (112) can be mounted at a first side of the substrate (102), with at least one surface of each heating element (112) in the array (110) being positioned within the detection region (106). A controller can be electrically coupled to the array (110) of heating elements (112), and the controller can individually address each heating element (112) in the array (110) to selectively pass electrical current through each heating element (112).
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 2, 2023
    Assignee: University of Utah Research Foundation
    Inventors: Timothy John Garrett, Florian Solzbacher, Konstantin Shkurko
  • Patent number: 11623009
    Abstract: Aspects of the present disclosure generally relate to compounds for targeting and healing bone fractures. Some of these compounds include a negatively charged oligopeptide comprising an acidic oligopeptide, a linker, which may be hydrolyzable or may be a substrate for the protease cathepsin K, and at least one molecule that promotes bone healing. In some compounds the molecule that promotes bone healing is an anabolic compound that inhibits GSK3?, in some compounds the molecule that promotes the healing of bone fracture is a pro-inflammatory agent such as PGE1. Other embodiments include methods of treating a bone fracture comprising administering a therapeutic amount of any one of the compounds disclosed herein.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: April 11, 2023
    Assignees: Purdue Research Foundation, University of Utah
    Inventors: Stewart Andrew Low, Philip S. Low, Christopher Galliford, Jindrich Kopecek, Jiyan Yang
  • Patent number: 11596346
    Abstract: A technology is described for determining an intended movement from neuromuscular signals. An example method (800) includes receiving electromyography (EMG) data corresponding to single-ended channels of an electrode array (810), where EMG signals are detected by electrodes comprising the single-ended channels of the electrode array and the EMG signals are converted to the EMG data. Determining differential channel pairs for the single-ended channels of the electrode array (820) and extracting feature data from the EMG data of the differential channel pairs (830). Thereafter a feature data set is selected from the feature data of the differential channel pairs (840) and the feature data set is input to a decode model configured to correlate the feature data set to an intended movement (850). Decode output is received from the decode model indicating the intended movement (860) and the decode output is provided to a device (870).
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: March 7, 2023
    Assignee: University of Utah Research Foundation
    Inventors: Suzanne Wendelken, Tyler Davis, David Page, David Kluger, David Warren, Gregory Clark, Christopher Duncan, Jacob Nieveen
  • Publication number: 20230069132
    Abstract: A bone implant system may include a plurality of bone anchors, a superior rod attachable to a superior portion of a bone via the bone anchors, and an inferior rod attachable to an inferior portion of the bone via the bone anchors. The superior rod may have a superior end, and the inferior rod may have an inferior end. The superior rod may telescopically engage the inferior rod such that a cavity is present within at least one of the superior rod and the inferior rod and such that a length of the combined superior and inferior rods, measured between the superior end and the inferior end, is adjustable. The cavity may contain a micropump and a chamber. The micropump may be configured to expel fluid into the chamber to urge the length to increase.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 2, 2023
    Applicant: University of Utah Research Foundation
    Inventors: John HEFLIN, T. Wade FALLIN, Zackery EVANS
  • Patent number: 11560384
    Abstract: A bioorthogonal molecule can include a molecule having a structure according the above wherein R1-R8 are independently selected from H, a substituted or unsubstituted C1-C4 alkyl or alkylene group, COOH, COOR9, COR9, CONR9R10, CN, CF3, and SO2R9, and where R9 and R10 are independently selected from H and a substituted or unsubstituted C1-C4 alkyl or alkylene group, with the proviso that one of R3-R8 comprises a leaving group, and wherein X is O, S, N, SO, SO2, SR+, Se, PO2?, or NRR?+, and where R and R? are independently selected from H or a substituted or unsubstituted C1-C4 alkyl or alkylene group.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: January 24, 2023
    Assignee: University of Utah Research Foundation
    Inventor: Raphael Franzini
  • Publication number: 20220401580
    Abstract: Provided are nucleotide sequences encoding polypeptides with ribonuclease III activity, wherein the nucleotide sequences have been modified to reduce their regulation by miRNAs. In some embodiments, the nucleotide sequences are at least 50% and as much as 100% identical to SEQ ID NO: 20 or SEQ ID NO: 22, and/or encode polypeptides that are at least 90% percent identical to SEQ ID NO: 23. Also provided are vectors and host cells that include the nucleotide sequences, methods for expressing the nucleotide sequences in cells, tissues, and organs, which in some embodiments can be in the eye of a subject in need thereof, methods for preventing and/or treating development of diseases or disorders and/or for restoring undesirably low DICER1 expression using the nucleotide sequences, and pharmaceutical compositions that have the presently disclosed nucleotide sequences.
    Type: Application
    Filed: November 12, 2020
    Publication date: December 22, 2022
    Applicants: University of Virginia Patent Foundation, University of Utah Research Foundation
    Inventors: Jayakrishna Ambati, Bradley David Unti Gelfand, Balamurali K. Ambati, Hironori Uehara
  • Patent number: 11524032
    Abstract: An ophthalmic composition or dosage form can include a therapeutically effective amount of a copper-containing agent that is sufficient to increase corneal lysyl oxidase activity in an eye of a subject in an amount sufficient to treat myopic progression and a pharmaceutically acceptable carrier. The composition or dosage form can be used to treat or prevent progression of myopia by administering a therapeutically effective amount of the composition to an eye of a subject during a treatment period.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: December 13, 2022
    Assignee: University of Utah Research Foundation
    Inventors: Randon Michael Burr, Balamurali K. Ambati, Sarah A. Molokhia
  • Patent number: 11517900
    Abstract: A method for separating and enriching sperm from a tissue sample comprises: obtaining a microfluidic separating system having an inlet end and an outlet end, and a membrane filter (e.g., hollow fiber membrane filter) fluidly connected to the outlet end; separating the tissue sample via the microfluidic separating system into a debris fluid volume and a sperm fluid volume; and enriching the sperm fluid volume by removing excess media via the membrane filter. A two-stage tissue sample separation system comprising: a microchannel structure defining a separation fluid channel to form a separation stage; an inlet end of the microchannel structure; an outlet end of the microchannel structure; and a membrane filter fluidly connected to the outlet end for removal of at least a portion of excess media in the tissue sample.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: December 6, 2022
    Assignee: University of Utah Research Foundation
    Inventors: Raheel Samuel, Bruce Gale, Alex Jafek, Timothy Jenkins, Jim Hotaling, Douglas Carrell, Jiyoung Son
  • Publication number: 20220370104
    Abstract: A bone fixation assembly may include a male member removably couplable with a female member. The male member may include a male load-sharing feature having at least one male load-sharing surface. The female member may include a female load-sharing feature having at least one female load-sharing surface. The female load-sharing feature may be positioned and shaped to receive the male load-sharing feature therein. In response to a bending load acting on the bone fixation assembly, at least one of the male member and the female member may bend such that, at least a portion of the at least one male load-sharing surface engages with at least a portion of the at least one female load-sharing surface to distribute the bending load between the male member and the female member.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 24, 2022
    Applicant: University of Utah Research Foundation
    Inventors: Justin HALLER, T. Wade FALLIN, Colin S. GREGERSEN
  • Patent number: 11466320
    Abstract: Branching phosphoramidite monomers and molecules having comb-like structures are disclosed and described. A branching phosphoramidite monomer having the structure is provided wherein R4 and R5 are independently —(O—CH2—CH2—)n where n is 1-5 or —O—(CH2—)n where n is 1-10, and R1, R2, and R3 are each one of dimethoxytrityl (DMT)—O—, levulinyl (Lev)—O—, and a phosphoramidite.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: October 11, 2022
    Assignee: University of Utah Research Foundation
    Inventors: John D. Phillips, Jennifer M. Heemstra
  • Patent number: 11464397
    Abstract: A system for propelling a magnetic robotic device through a human comprises a magnetic actuator device operable to generate a rotating magnetic field, and a magnetic robotic device comprising a compliant body and at least two permanent magnets supported by and spatially separated about the compliant body. A non-magnetic region can also be oriented between the at least two permanent magnets. The at least two permanent magnets can be alternating or non-alternating in polarity with each other. In response to application of the rotating magnetic field generated by the magnetic actuator device and that is situated proximate the magnetic robotic device, the rotating magnetic field effectuates undulatory locomotion of the magnetic robotic device to propel the magnetic robotic device through a human, such as through a natural lumen. Further, the magnetic robotic device can optionally be supported by a catheter or endoscope to assist with propelling a distal end through a human.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: October 11, 2022
    Assignee: University of Utah Research Foundation
    Inventors: Jacob J Abbott, Lan N. Pham
  • Patent number: 11457965
    Abstract: A tether assembly may be attached to a bone to correct a rotational deformity. The bone may have a growth plate that separates a first section of the bone from a second section of the bone. The tether assembly may have a tether member with a first end, a second end, and a central portion extending between the first end and the second end. The first end may have a closed outer wall that defines and fully bounds a first aperture. The second end may have an open outer wall that defines and partially bounds a second aperture. The open outer wall may define a slot in communication with the second aperture. The first and second ends may be securable to the first and second sections of the bone via coupling members inserted through the first and second apertures and anchored in the first and second sections, respectively.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: October 4, 2022
    Assignee: University of Utah Research Foundation
    Inventors: Zackery Evans, T. Wade Fallin, Peter M. Stevens
  • Publication number: 20220288114
    Abstract: Opthalmic compositions are disclosed and described herein. In some embodiments, an ophthalmic composition can include as active agents a copper-containing agent and a secondary therapeutic agent in combination with a pharmaceutically acceptable carrier. The active agents can be present in amounts sufficient to treat myopic progression during a treatment period.
    Type: Application
    Filed: July 13, 2020
    Publication date: September 15, 2022
    Applicant: University of Utah Research Foundation
    Inventors: Randon Michael Burr, Balamurali K. Ambati, Sarah A. Molokhia
  • Patent number: 11441166
    Abstract: Devices, systems, and compositions of matter involving enzyme-mediated bioelectrocatalysis are disclosed and described. An enzyme electrode can include an electrode, a bioelectric material coupled to the electrode, the bioelectric material further including a water-permeable polymer matrix, a planar linker covalently coupled to the water-permeable polymer matrix and noncovalently coupled to the electrode, and electrochemically active oxidoreductase enzyme molecules functionally embedded in the water-permeable polymer matrix.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: September 13, 2022
    Assignee: University of Utah Research Foundation
    Inventors: David P. Hickey, Shelley D. Minteer
  • Patent number: 11434481
    Abstract: A device for rapid non-destructive genetic material collection can include a multi-reservoir array (202) and a movement mechanism. The multi-reservoir array (202) can include multiple reservoirs (204). A plurality of the multiple reservoirs (204) can include an abrasive surface (210) capable of retaining a source of genetic material in a liquid carrier. The abrasive surface (210) has a roughness. The movement mechanism can be operable to move the multi-reservoir array (202) in an oscillating motion sufficient to create relative movement between the abrasive surface (210) and the source of the genetic material in order to remove a portion of genetic material from the source of the genetic material without destroying the source of the genetic material or the portion of the genetic material that is removed.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: September 6, 2022
    Assignee: University of Utah Research Foundation
    Inventors: Raheel Samuel, Christopher J. Lambert, Bruce K. Gale, Joshua L. Bonkowsky, Briana Freshner, Tak Chi Arlen Chung
  • Publication number: 20220274949
    Abstract: The present invention presents 2-(acylamino)imidazoles with therapeutic activity, including selective activity against cancer cells, and compositions comprising them. Methods of using and preparing the 2-(acylamino)imidazoles are also presented.
    Type: Application
    Filed: May 10, 2022
    Publication date: September 1, 2022
    Applicants: Curza Global, LLC, University of Utah Research Foundation
    Inventors: Ryan E. Looper, Justin M. Salvant, Emily K. Kirkeby, Wenxing Guo, Katrin P. Guillen, Bryan E. Welm
  • Patent number: 11426433
    Abstract: A therapeutic composition can include an amount of amniotic fluid having a therapeutically effective amount of at least one protein, hyaluronic acid, or both. The therapeutic composition can be substantially free of lanugo, vernix, and cells harvested with the amniotic fluid.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: August 30, 2022
    Assignee: University of Utah Research Foundation
    Inventors: Jo-Anna Reems, Jan Pierce
  • Patent number: 11422090
    Abstract: A phase plate for high precision wavelength extraction can include a planar substrate which has a point spread function engineered profile formed of a tessellation of regions. The point spread function engineered profile transforms a point spread function of a light source to form a wavelength dependent geometric pattern. The geometric pattern can also preserve spatial location information of the light source. Such a phase plate permits extracting three-dimensional position and the wavelength of a point emitter.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: August 23, 2022
    Assignee: University of Utah Research Foundation
    Inventors: Jason Martineau, Jordan Gerton, Erik Jorgensen, Tim Allen
  • Patent number: 11406361
    Abstract: A method for mapping shear wave velocity in biological tissues includes using an ultrasound transducer to generate mechanical excitations at a plurality of locations in a region of interest. An MRI system is used to capture a phase image of each mechanical excitation, wherein motion encoding gradients (MEGs) of the MRI system encode a propagating shear wavefront caused by the mechanical excitation. A plurality of shear wave velocity maps is generated based on the phase images, wherein each shear wave velocity map depicts velocity between adjacent propagating shear wavefronts. The shear wave speed values are combined to generate a composite shear wave velocity map of the region of interest.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: August 9, 2022
    Assignees: Siemens Healthcare GmbH, University of Utah Research Foundation
    Inventors: Lorne Hofstetter, Bradley Drake Bolster, Jr., Dennis L. Parker, Henrik Odeen, Allison Payne