Patents Assigned to University
  • Patent number: 11529511
    Abstract: Certain substances (e.g., large molecules) that ordinarily cannot traverse the cell membrane of cells can be introduced into cells by applying an alternating electric field to the cell for a period of time, wherein the frequency of the alternating electric field is selected so that application of the alternating electric field increases permeability of the cell membrane. Once the permeability of the cell membrane has been increased, the substance is able to cross the cell membrane. This approach is particularly useful in the context of cancer cells (e.g., glioblastoma).
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: December 20, 2022
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Novocure GmbH
    Inventors: Edwin Chang, Chirag B. Patel, Sanjiv S. Gambhir, Tali Voloshin-Sela, Yaara Porat, Moshe Giladi
  • Patent number: 11530438
    Abstract: Provided herein is a circular proximity ligation assay in which proximity-probes are employed as bridges to connect two free oligonucleotides via a dual ligation event, resulting in the formation of a circle. The circles are then quantified by, e.g., qPCR. The addition of an extra oligonucleotide is believed to enhance specificity by decreasing the probability of random background ligation events. In addition, circle formation may have selective advantages, as uncircularized DNA can be removed by a simple exonuclease treatment and it has streamlined the workflow by eliminating preamplification prior to qPCR.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: December 20, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Henrik H. J. Persson, Roxana Jalili, Joseph L. Horecka, Ronald W. Davis
  • Patent number: 11530909
    Abstract: The present invention relates to a fiber composite for a strain sensor and a method for producing the same. The composite includes a stretchable fiber; a conductive elastic polymer layer coated on the stretchable fiber; polymer beads disposed on the stretchable fiber or on the elastic polymer layer; and a conductive elastic polymer layer covering the polymer beads. The fiber composite is durable and stable. Therefore, a strain sensor produced using the fiber composite exhibits excellent durability, recoverability, repeatability and sensitivity, and a fast sensing speed.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: December 20, 2022
    Assignee: Research & Business Foundation Sungkyunkwan University
    Inventors: Chang Hyun Pang, Gi Ra Yi, Ji Sun Kim, Da Wan Kim, Si Yeon Jang
  • Patent number: 11532924
    Abstract: A distributed feedback (DFB) laser array includes a substrate, a semiconductor stacked structure, a first electrode layer, and a second electrode layer. The semiconductor stacked structure is formed above a surface of the substrate and includes two light-emitting modules and a tunnel junction. Each light-emitting module of the two light-emitting modules includes an active layer, a first cladding layer, and a second cladding layer. The active layer is installed between the first cladding layer and the second cladding layer, and the active layer has multiple lasing spots along a first direction, wherein the multiple lasing spots are used for generating multiple lasers. The tunnel junction is installed between the two light-emitting modules. The first electrode layer is formed above the semiconductor stacked structure. The second electrode layer is formed above another surface of the substrate.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: December 20, 2022
    Assignee: National Taiwan University
    Inventors: Chao-Hsin Wu, Chieh Lo
  • Patent number: 11531884
    Abstract: A separate quantization method of forming a combination of 4-bit and 8-bit data of a neural network is disclosed. When a training data set and a validation data set exist, a calibration manner is used to determine a threshold for activations of each of a plurality of layers of a neural network model, so as to determine how many of the activations to perform 8-bit quantization. In a process of weight quantization, the weights of each layer are allocated to 4-bit weights and 8-bit weights according to a predetermined ratio, so as to make the neural network model have a reduced size and a combination of 4-bit and 8-bit weights.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: December 20, 2022
    Assignee: National Chiao Tung University
    Inventors: Tien-Fu Chen, Chien-Chih Chen, Jing-Ren Chen
  • Patent number: 11530303
    Abstract: Perovskite-polymer composites including perovskite nanocrystals dispersed in a polymer matrix, wherein the perovskite nanocrystals have an average size of from about nm to about 20 nm. Methods for producing a perovskite-polymer composites that may include contacting a solid material comprising a polymer matrix with a solution comprising a perovskite precursor; allowing the solution to penetrate the solid material to yield a swollen solid material comprising the perovskite precursor dispersed within the polymer matrix; optionally contacting the swollen solid material with an antisolvent; and annealing the swollen solid material to crystallize the perovskite precursor and to yield the perovskite-polymer composite comprising perovskite nanocrystals dispersed in the polymer matrix.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: December 20, 2022
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Yajie Dong, Shin-Tson Wu, Caicai Zhang, Ziqian He
  • Patent number: 11530996
    Abstract: A method is described for determining the structure of a surfactant complex formed at an immiscible liquid-liquid interface. The surfactant complex forms and crystallizes at the interface between an aqueous phase comprising a divalent metal salt and a non-aqueous phase comprising an anionic surfactant. The non-aqueous phase may be in the form of a droplet surrounded by the aqueous phase. The structure of the surfactant complex is determined by X-ray crystallography.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: December 20, 2022
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Theis Ivan Solling, Safwat Abdelazeim
  • Patent number: 11530378
    Abstract: Described herein are nanostraw well insert apparatuses (e.g., devices and systems) that include nanotubes extending through and out of a membrane so that a material can pass through the membrane from a fluid reservoir depot and into a cell grown onto the nanotubes when electrical energy (e.g., electroporation energy) is applied. In particular, the device, systems and methods described herein may be adapted for cell growth viability and transfection efficiency (e.g., >70%). These apparatuses may be readily integratable into cell culturing processes for improved transfection efficiency, intracellular transport, and cell viability.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: December 20, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ryan T. Swoboda, Yuhong Cao, Sergio Leal-Ortiz, Stefanie Rothkoetter, Nicholas A. Melosh
  • Patent number: 11529393
    Abstract: Provided are compositions and methods for production of anti-inflammatory cytokines, growth factors, or chemokines. Provided are nucleic acids (e.g., expression vectors) that include an NF?B inflammation response element operably linked to a nucleotide sequence encoding an anti-inflammatory cytokine (e.g., IL-4). In some cases, the nucleic acid is an expression vector selected from: a linear expression vector, a circular expression vector, a plasmid, and a viral expression vector. Also provided are cells (e.g., mesenchymal stem cells—MSCs) comprising a nucleic acid that includes an NF?B inflammation response element operably linked to a nucleotide sequence encoding an anti-inflammatory cytokine. In some cases, the nucleic acid is integrated into the cell's genome.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: December 20, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Tzuhua Lin, Jukka Pajarinen, Stuart B. Goodman
  • Patent number: 11530424
    Abstract: The clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technique, based on the non-homologous end-joining (NHEJ) repair pathway, can efficiently generate gene knockouts of variably sizes. More precise genome editing, either the insertion or deletion of a desired fragment, can be done by combining the homology-directed-repair (HDR) pathway with CRISPR cleavage. HDR-mediated gene knock-in experiments are inefficient, with no reports of successful gene knock-in with DNA fragments larger than 4 kb. Targeted insertion of large DNA fragments (7.4 and 5.8 kb) into the genomes of mouse embryonic stem cells and zygotes, respectively, using the CRISPR/HDR technique without NHEJ inhibitors was performed and indicate that CRISPR/HDR without NHEJ inhibitors can result in highly efficient gene knock-in, equivalent to CRISPR/HDR with NHEJ inhibitors.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 20, 2022
    Assignees: University of South Florida, United States Department of Veterans Affairs
    Inventors: Jia-Wang Wang, Richard F. Lockey
  • Patent number: 11531025
    Abstract: Provided herein are methods and materials that allow targeting and imaging of interactions between probes and targets. In some embodiments, the probes include nanoscale materials with embedded solutions that can be used to measure physical enhancement by materials under X-ray irradiation. In some embodiments, the methods of the present invention include delivering a probe material to a target that can have a delivered donor material. In some embodiments, methods of the present invention include irradiating the target and determining an optical change in the probe characteristic of a physical enhancement.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: December 20, 2022
    Assignee: The Regents of the University of California
    Inventor: Ting Guo
  • Patent number: 11530973
    Abstract: A high-temperature and high-pressure equipment and method for microscopic visual sulfur deposit seepage test is provided by the present disclosure, the equipment comprises an injection system, a high-temperature and high-pressure visual kettle, a pressure supply system, a data acquisition and analysis system, a fluid recovery system, and an injection branch pipe; the injection system comprises an ISCo micro-injection pump, an intermediate container, a thermostatic heating oven and a pressure meter; the intermediate container is arranged in the thermostatic heating oven, the ISCo micro-injection pump is connected to the intermediate container; the data acquisition and analysis system comprises a microscope, a high-brightness light source and a computer; the pressure supply system comprises an annular pressure tracking pump, a back pressure pump, a back pressure valve and a pressure gauge; the fluid recovery system comprises a wide neck flask with rubber stopper, a balance, a flowmeter and an exhaust gas absorb
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: December 20, 2022
    Assignee: Southwest Petroleum University
    Inventors: Xiao Guo, Ziming Shi, Li Zhou, Shengyuan Wang, Jun Luo, Linkai Li, Ming Zhou, Jingjing Ma, Li Wang, Bing Kong
  • Patent number: 11530259
    Abstract: The disclosure provides for methods and treatments of TLR2-mediated diseases and disorders comprising administering an antibody, antibody fragment, or polypeptide that binds to and inhibits the biological activity of oxidized phospholipids.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: December 20, 2022
    Assignee: The Regents of the University of California
    Inventors: Joseph L. Witztum, Sotirios Tsimikas, Xuchu Que
  • Patent number: 11532923
    Abstract: A vertical-cavity surface emitting laser includes a substrate, a first reflector, an active region, an oxide layer, a second reflector, and a circular metal electrode. The first reflector is formed above the substrate. The active region is formed above the first reflector, and includes at least one quantum well. The at least one quantum well generates a laser beam with a plurality of modes. The oxide layer is formed above the active region and includes an oxide aperture. The second reflector is formed above the oxide layer. The circular metal electrode is formed in a circular concave in the second reflector. The circular metal electrode reflects other modes of the laser beam with the plurality of modes except for a fundamental mode and receive an operational voltage. A window exists between the circular concave and lets the laser beam with the fundamental mode pass.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: December 20, 2022
    Assignee: National Taiwan University
    Inventors: Chao-Hsin Wu, Szu-Yu Min, Hao-Tien Cheng
  • Patent number: 11529069
    Abstract: An exemplary system, method and computer-accessible medium for generating a denoised magnetic resonance (MR) image(s) of a portion(s) of a patient(s) can be provided, which can include, for example, generating a plurality of MR images of the portion(s), where a number of the MR images can be based on a number of MR coils in a MR apparatus used to generate the MR images, generating MR imaging information by denoising a first one of the MR images based on another one of the MR images, and generating the denoised MR image(s) based on the MR imaging information. The number of the MR coils can be a subset of a total number of the MR coils in the MR apparatus. The number of the MR coils can be a total number of the MR coils in the MR apparatus. The MR information can be generated by denoising each of the MR images based on the other one of the MR images.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: December 20, 2022
    Assignee: New York University
    Inventors: Dmitry Novikov, Gregory Lemberskiy, Steven H. Baete, Jelle Veraart, Els Fieremans
  • Patent number: 11531099
    Abstract: Systems and methods for detection and reporting of small targets to an operational area. Exemplary embodiments are presented to detect targets such as avian species, UAS, UAV, and drones, and transmit unique small target identifier information via data link, such as ADS-B, to an operational area.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: December 20, 2022
    Assignee: Ohio University
    Inventors: Chris G. Bartone, Anthony Milluzzi
  • Patent number: 11533018
    Abstract: An apparatus can include a central member comprising a first side, a second side, and a third side, a first interior panel rotatably attached to the first side, a second interior panel rotatably attached to the second side, a third interior panel rotatably attached to the third side, a first exterior panel rotatably attached to the first interior panel, a second exterior panel rotatably attached to the second interior panel, a third exterior panel rotatably attached to the third interior panel, a first interior biasing member attached to the central member and the first interior panel and biasing the first interior panel to extend away from the central member toward a plane parallel to the central member, and a first interior restraint cable attached to the central member and the first interior panel and restraining the first interior panel from extending along the plane parallel to the central member.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 20, 2022
    Assignee: Brigham Young University (BYU)
    Inventors: Spencer Magleby, Larry Howell, Nathan Pehrson
  • Patent number: 11531121
    Abstract: A method is provided to reduce the counting times in radiation detection systems using machine learning, wherein the method comprises: receiving output data from a detector which is to detect a target material from a target body; analyzing the output data; identifying a material of interest from the analyzed output data; and controlling a source of the target material to prevent the source from harming the target body. An apparatus is also provided which comprises: a detector to detect radiation and to provide an output data in real-time; and a processor coupled to the detector, wherein the processor is to: receive the output data; analyze the output data; identify a material of interest from the analyzed output data; and control a source of the target material.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: December 20, 2022
    Assignee: Oregon State University
    Inventors: Ophir Frieder, Steven Richard Reese, Jessica Ryan Curtis
  • Patent number: RE49339
    Abstract: The present invention relates to methods and materials for modulating the complement alternative pathway (CAP), the complement classical pathway (CCP), the complement lectin/mannose pathway (CMP), or combinations thereof, as well as methods and materials for targeting diagnostic, prophylactic and therapeutic agents to localized areas of tissue within the body where they may more directly exert their effects upon the intended target cells or tissue, with reduced, associated systemic effects compared with administration of the same or similar agents in an untargeted, systemic manner. The methods and materials of the present invention may therefore allow for increased efficacy, lower threshold effective dosages and/or lower effective maintenance doses, and/or reduced associated undesired or adverse effects in terms of frequency or severity of occurrence, or both.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: December 20, 2022
    Assignees: The Regents of The University of Colorado, A Body Corporate, MUSC Foundation For Research Development
    Inventors: V. Michael Holers, Joshua M. Thurman, Liudmila Kulik, Stephen Tomlinson
  • Patent number: RE49340
    Abstract: The invention utilizes virtual screening strategy to seek for current market drugs as anti-schizophrenia therapy drug repurposing. Drug repurposing strategy finds new uses other than the original medical indications of existing drugs. Finding new indications for such drugs will benefit patients who are in needs for a potential new therapy sooner since known drugs are usually with acceptable safety and pharmacokinetic profiles. In this study, repurposing marketed drugs for DAAO inhibitor as new schizophrenia therapy was performed with virtual screening on marketed drugs and its metabolites. The identified and available drugs and compounds were further confirmed with in vitro DAAO enzymatic inhibitory assay.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: December 20, 2022
    Assignees: National Taiwan University, National Yang Ming Chiao Tung University, National Health Research Institutes
    Inventors: Yufeng Jane Tseng, Yu-Li Liu, Chung-Ming Sun, Hai-Gwo Hwu, Chih-Min Liu, Wen-Sung Lai