Abstract: The systems, devices and methods provide customizable and adjustable support to anatomical tissue or organs, such as pelvic, vaginal, uterine, cervical, bladder, rectal, among others, or any combination thereof. The anatomical support device may include a support member having a periphery that surrounds an opening. The support member may be configured to releasably and adjustably expand between one or more expanding states from a resting state and contract to the resting state. The support member may include a first portion and a second portion disposed along the periphery. Each portion may include a passage cross-sectional area and a wall thickness. The first wall thickness and/or the first passage cross-sectional area of the first portion may be different from the second wall thickness and/or the second passage cross-sectional area of the second portion.
Abstract: Identifying insect species integrates image processing, feature selection, unsupervised clustering, and a support vector machine (SVM) learning algorithm for classification. Results with a total of 101 mosquito specimens spread across nine different vector carrying species demonstrate high accuracy in species identification. When implemented as a smart-phone application, the latency and energy consumption were minimal. The currently manual process of species identification and recording can be sped up, while also minimizing the ensuing cognitive workload of personnel. Citizens at large can use the system in their own homes for self-awareness and share insect identification data with public health agencies.
Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
Abstract: This system is designed to color correct a targeted color or colors in a video stream comprising: a computer device having a computer readable medium; and, a set of computer readable instructions embodied on the computer readable medium that are configured to: receive a dataset that includes one or more pairs of video frames where a first frame of the pair of an incorrect color frame and the second frame of the pair is a color correct frame, using a machine learning module to create a mask according to the dataset, receiving an image, correcting the image, and, transmitting the corrected image to a display.
Abstract: An apparatus for testing corrosion can comprise a frame and a rack having a generally planar face, a first edge, and a second edge. The rack can be pivotably coupled to the frame. The apparatus can be configured for selectively orienting the rack to position the first edge of the rack with a select vertical offset with respect to the second edge of the rack.
Abstract: A trough plate for constructing a locked polymer anti-seepage wall includes a plate body, a guide tube, a grouting pipe and an anti-blocking head. A construction method of the locked polymer anti-seepage wall includes the steps of positioning an Nth trough plate and then pressing the Nth trough plate into ground, wherein N is a natural number larger than and equal to 1; engaging an (N+1)th trough plate with the Nth trough plate, and then pressing the (N+1)th trough plate into the ground; connecting a grouting pipe of the Nth trough plate with a grouting machine, pulling out the Nth trough plate, and simultaneously grouting through the grouting pipe of the Nth trough plate by the grouting machine; and repeating the steps (B) and (C) till the locked polymer anti-seepage wall is completed, wherein the steps (B) and (C) are repeated every time, N is automatically increased by 1.
Type:
Grant
Filed:
May 29, 2021
Date of Patent:
November 15, 2022
Assignees:
Zhengzhou University, Henan Institute of Sun Yat-sen University
Abstract: The invention relates to a device for magnetic measurements and/or magnetic imaging such as an MRI device or a hybrid MEG-MRI device. The device comprises an array of one or more detectors for the magnetic signal and one or more coils for producing preparatory magnetic field pulses. The device further comprises means to drive current pulses through the said coils, wherein at least one of the coils comprises material that is Type-II superconducting at the operating temperature. The device is configured to cancel out at least part of the field generated by the remanent magnetization after a current pulse by the shape of the current pulse and/or the geometrically balanced design of the coil.
Abstract: Ferritin or iron-based image enhancement agents identify target tissue for treatment or ablation and are heated by microwave absorption. Microwave heat substrates enhance microwave hyperthermal ablation treatment, and may be percutaneously delivered and imaged by x-ray CT during placement of the microwave treatment antenna, allowing more precise positioning and more complete ablation of a tumor site. One method of treating a target tissue uses image-guided delivery of a heat substrate with a reverse-phase change polymer, and may apply energy to fix a mass of the material in the tissue. The fixed polymer may increase hyperthermia, form a thermal boundary, or blockade a vessel or passage so as to reduce or prevent undesired conductive cooling by contiguous tissue, or may deliver a localized treatment drug at the site, upon heating or as it degrades over time.
Type:
Grant
Filed:
December 5, 2017
Date of Patent:
November 15, 2022
Assignees:
Brown University, Rhode Island Hospital
Inventors:
Damian E. Dupuy, William Keun Chan Park, Edward G. Walsh
Abstract: A queue control system controls a queue structure of a queue in an amusement park. The queue control system includes a controller and a queue structure control associated with the queue structure. The controller receives, from an input device that monitors a queue characteristic of the queue, data feedback indicative of the queue characteristic. The queue characteristic is indicative of a queue length, queue wait time, queue rate, or queue throughput. The controller also outputs a control command based on the data feedback. The queue structure control receives the control command and changes at least one aspect of the queue structure based on the control command.
Type:
Grant
Filed:
March 17, 2020
Date of Patent:
November 15, 2022
Assignee:
Universal City Studios LLC
Inventors:
Gregory Shellman Hall, Shelby Nicole Honea, Zachary Robert Harig, David Gerard Majdali
Abstract: According to one or more embodiments presently disclosed, a catalyst for converting hydrocarbons may include catalytic oxidized metal materials comprising oxidized iron, oxidized cobalt, and oxidized copper. At least 95 wt. % of the catalytic oxidized metal materials may be a combination of oxidized iron, oxidized cobalt, and oxidized copper. The catalyst may additionally include a mesoporous support material comprising pores having an average pore diameter of from 2 nm to 50 nm. At least 95 wt. % of the mesoporous support material may comprise alumina. At least 95 wt. % of the catalyst may be the combination of the catalytic oxidized metal materials and the mesoporous support material. Additional embodiments are included, such as methods for making the presently disclosed catalysts.
Type:
Grant
Filed:
July 17, 2019
Date of Patent:
November 15, 2022
Assignees:
Saudi Arabian Oil Company, King Abdullah University of Science and Technology
Abstract: An apparatus for patterning biological cells, and a method of patterning and coculturing biological cells using the apparatus. The apparatus includes a fluidic structure having an outlet and a plurality of inlets, the fluidic structure is arranged to facilitate a flow of a plurality of different cells in a cell suspension therethrough, wherein each of the plurality of inlets is arranged to facilitate a loading of the plurality of different cells from a plurality of supplies into the fluidic structure; and a flow controlling device arranged to control the flow of the plurality of different cells through the fluidic structure and/or the loading of the plurality of different cells from the plurality of supplies through the plurality of inlets; wherein the fluidic structure is further arranged to facilitate a simultaneous observation of the plurality of different cells arranged in a predetermined pattern in the fluidic structure.
Abstract: An energy meter is configured to determine component waveforms that form a measured waveform. The meter inputs the waveform into one or more entries of a data structure, each entry of the one or more entries of the data structure storing a weight value that is determined based at least in part on values of the data signatures representing the plurality of remote devices, each entry being connected to one or more other entries of the data structure. The meter, for each of the one or more entries, generates an output value by performing an arithmetic operation on the waveform stored at that entry, the arithmetic operation comprising a function of the weight value. The meter identifies, from among the data signatures, one or more particular data signatures that are represented in the waveform. The meter determines, based on the particular data signatures, an operational state of another device.
Type:
Grant
Filed:
May 10, 2018
Date of Patent:
November 15, 2022
Assignee:
Carnegie Mellon University
Inventors:
Henning Lange, Jeremy Zico Kolter, Mario Berges
Abstract: A high speed multi-directional 3D printer includes two opposing delta 3D printers set in an opposing configuration, a modified frame to enable both delta 3D printers to slide back and forth, two horizontal/outward printing extruders, and a sliding/locking kernel substrate mount with adhesive for printing against gravity.
Type:
Grant
Filed:
September 8, 2020
Date of Patent:
November 15, 2022
Assignee:
Brown University
Inventors:
Ian Gonsher, Justin Jae Chul Lee, Matthew Lo
Abstract: A method of processing cardiac ultrasound data for determining information about a mechanical wave in the heart. The method comprises receiving data representative of a time series of three-dimensional data frames, generated from ultrasound signals from a human or animal heart, each frame comprising a set of voxels, each voxel value representing an acceleration component of a respective location in the heart at a common time. The method also comprises identifying, for each voxel, a frame of the series in which the voxel value is at a maximum. A three-dimensional time-propagation data set is generated by assigning each voxel a value representative of the time of the respective frame in the time series for which the corresponding voxel is at a maximum. The method then comprises generating data representative of a three-dimensional velocity vector field by calculating time derivatives from the three-dimensional time-propagation data set.
Type:
Grant
Filed:
September 27, 2019
Date of Patent:
November 15, 2022
Assignee:
Norwegian University of Science and Technology (NTNU)
Inventors:
Sebastien Salles, Lasse Lovstakken, Hans Torp
Abstract: The present application discloses methods, devices, and systems for generating spatially-resolved quantification of cross-linking in cartilage based on Raman scattering of excitation light. The examples presented demonstrate that the method provides a discriminating power sufficient to distinguish early onset of osteo-arthritis even before a patient is symptomatic.
Type:
Grant
Filed:
June 10, 2017
Date of Patent:
November 15, 2022
Assignee:
The Trustees of Columbia University in the City of New York
Abstract: Disclosed are an anisotropic mechanical expansion (anisotropic Poisson's ratio) substrate and a crack-based pressure sensor using the same. The substrate having an anisotropic Poisson's ratio includes a first layer having linear concave and convex patterns arranged in parallel to each other on a surface thereof; and a second layer having linear convex and concave patterns respectively engaged with the linear concave and convex patterns of the first layer on a surface thereof, wherein the first layer and the second layer are stacked with each other so that the linear convex and concave patterns of the second layer are respectively engaged with the linear concave and convex patterns of the first layer, wherein an elastic modulus of the first layer is different from an elastic modulus of the second layer.
Type:
Grant
Filed:
January 12, 2022
Date of Patent:
November 15, 2022
Assignee:
Research & Business Foundation Sungkyunkwan University
Abstract: Chimeric antigen receptors containing TSLPR-CD19 and TSLPR-CD22 antigen binding domains are disclosed. Nucleic acids, recombinant expression vectors, host cells, antigen binding fragments, and pharmaceutical compositions, relating to the chimeric antigen receptors are also disclosed. Methods of treating or preventing cancer in a subject, and methods of making chimeric antigen receptor T cells are also disclosed.
Type:
Grant
Filed:
June 22, 2021
Date of Patent:
November 15, 2022
Assignees:
Lentigen Technology, Inc., The Regemts of the University of Colorado
Inventors:
Dina Schneider, Boro Dropulic, Terry James Fry
Abstract: Provided are methods and apparatuses for packet scheduling for software-defined networking in an edge computing environment. A packet scheduling method according to an exemplary embodiment of the present disclosure comprises: receiving packets arriving at a queue connected to a switch in a software-defined network in an edge computing environment; moving the packets in the queue forward one position based on the order of arrival each time a packet is served by the switch; and if a new packet enters the switch while the buffer in the queue is full, pushing out the packet at the front and putting the new packet at the end of the queue.
Type:
Grant
Filed:
July 10, 2020
Date of Patent:
November 15, 2022
Assignee:
Research & Business Foundation Sungkyunkwan University
Abstract: The present application discloses a supported PtZn intermetallic alloy catalyst, a method for preparing the same and application thereof. The catalyst uses SiO2 as a support and Zn as a promoter, and a small amount of active component Pt is supported; the weight percentage of Pt is 0.025%-1%, and the weight percentage of Zn is 0.025%-1.7%, a co-impregnation method is adopted in preparation, the SiO2 support is impregnated in aqueous solution of chloroplatinic acid and zinc nitrate, and then drying and high-temperature reduction are performed to obtain a PtZn/SiO2 catalyst. The catalyst has the advantages of high activity, high stability, low price and low toxicity. The catalyst provided by the present application is applicable to preparation of alkene through short-chain alkane dehydrogenation, in particular to preparation of propylene through propane dehydrogenation in a hydrogen atmosphere.