Patents Assigned to University
  • Patent number: 10554110
    Abstract: Displacement devices comprise a stator and a moveable stage. The stator comprises a plurality of coils shaped to provide pluralities of generally linearly elongated coil traces in one or more layers. Layers of coils may overlap in the Z-direction. The moveable stage comprises a plurality of magnet arrays. Each magnet array may comprise a plurality of magnetization segments generally linearly elongated in a corresponding direction. Each magnetization segment has a magnetization direction generally orthogonal to the direction in which it is elongated and at least two of the magnetization directions are different from one another. One or more amplifiers may be connected to selectively drive current in the coil traces and to thereby effect relative movement between the stator and the moveable stage.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: February 4, 2020
    Assignee: The University of British Columbia
    Inventors: Xiaodong Lu, Irfan-Ur-Rab Usman
  • Patent number: 10551060
    Abstract: Systems and processes of providing novel thermal energy sources for hydrothermal liquefaction (HTL) reactors are described herein. According to various implementations, the systems and processes use concentrated solar thermal energy from a focused high-energy beam to provide sufficient energy for driving the HTL biomass-to-biocrude process. In addition, other implementations convert biowaste, such as municipal biosolids and grease and food waste, to biocrude using anaerobic digesters, and a portion of the biogas generated by the digesters is used to produce the thermal and/or electrical energy used in the HTL reactor for the biomass-to-biocrude process. Furthermore, alternative implementations may include a hybrid system that uses biogas and solar radiation to provide sufficient thermal energy for the HTL reactor.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: February 4, 2020
    Assignee: Board of Regents, The University of Texas System
    Inventors: Halil Berberoglu, Rhykka L. Connelly, Joey Anthony, Cody Bond
  • Patent number: 10553132
    Abstract: Provided are methods for creating a pressurized cadaver model used for surgical procedure training. In the method the internal jugular veins, common carotid arteries, brachial arteries, superficial femoral arteries and femoral veins thereof of a cadaver are exposed. One internal jugular vein is ligated and a drainage tube is disposed in the other internal jugular vein. An arterial catheter is inserted into one brachial artery and connected to a pressure transducer and an arterial cannula is placed in a carotid artery and connected to a fusion pump. Fluid is injected into the artery through the cannulated carotid artery. A representative example of the surgical procedure includes resuscitative endovascular balloon occlusion of the aorta.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: February 4, 2020
    Assignee: University of Maryland, Baltimore
    Inventors: Megan Brenner, Thomas Scalea
  • Patent number: 10551384
    Abstract: Certain embodiments of the invention provide a method of detecting the presence of a biomarker associated with resistance to an mTOR kinase inhibitor in a subject, comprising determining the presence of the biomarker in a physiological sample from the subject, wherein the sample comprises a nucleic acid.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: February 4, 2020
    Assignee: Rutgers, The State University Of New Jersey
    Inventor: Steven Zheng
  • Patent number: 10550225
    Abstract: [Problem] To provide a gel which can be produced in a short time, has controlled properties such as modulus and expansion pressure, and has a low polymer concentration. [Solution] A process for producing a polymer gel in which gel-precursor clusters have been crosslinked with one another to form a three-dimensional network structure, characterized by comprising a) a step in which monomer or polymer units that are present in a concentration less than a critical gelation concentration are crosslinked to form the gel-precursor clusters, the gel-precursor clusters having a storage modulus G? and a loss modulus G? which satisfy the relationship G?<G?, and b) a step in which the gel-precursor clusters are crosslinked with one another by a crosslinking agent to obtain a gel having a three-dimensional network structure.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: February 4, 2020
    Assignee: The University of Tokyo
    Inventors: Takamasa Sakai, Yuichi Tei
  • Patent number: 10548479
    Abstract: A system for imaging and quantifying shear wave and shear modulus under orthogonal acoustic radiation force (ARF) excitation using the OCT Doppler variance apparatus. The ARF perpendicular or with at least a perpendicular component to the OCT beam is produced by a remote ultrasonic transducer. The OCT Doppler variance apparatus, which is sensitive to the transverse vibration, is used to measure the ARF induced vibration. For analysis of the shear modulus, the Doppler variance apparatus is utilized to visualize shear wave propagation. The propagation velocity of the shear wave is measured and then used to quantitatively map the shear modulus.
    Type: Grant
    Filed: February 13, 2016
    Date of Patent: February 4, 2020
    Assignee: The Regents of the University of California
    Inventors: Zhongping Chen, Jiang Zhu
  • Patent number: 10548965
    Abstract: The present invention provides co-administration (e.g., immunogenic cocktail and/or prime-boost regimens) of computationally optimized H5N1 influenza hemagglutinin (HA) polypeptides that. Co-administration of the optimized H5N1 influenza hemagglutinin (HA) polypeptides facilitates synergistic neutralization of viral infection and provides for improved protective immunity (e.g., a broad reactive immune response) to multiple H5N1 influenza virus clades and strains.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: February 4, 2020
    Assignees: Oregon Health & Science University, Sanofi Pasteur, Inc.
    Inventors: Ted Milburn Ross, Tim Alefantis, Donald Martin Carter, Christopher Austin Darby, Harold Kleanthous
  • Patent number: 10551612
    Abstract: Disclosed is a scanning apparatus including a substrate, an outer gimbal connected to the substrate and including an outer coil, an inner gimbal connected to the outer gimbal and including an inner coil, a mirror connected to the inner gimbal and having a reflective face formed on one side, and a magnetic assembly disposed below the substrate, wherein a spring including a plurality of strings is provided between the inner gimbal and the mirror, the plurality of strings being symmetrical to one another with respect to a longitudinal axis of the spring.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: February 4, 2020
    Assignees: SenPlus Inc., Ewha University—Industry Collaboration
    Inventors: Chang-Hyeon Ji, Jong Uk Bu
  • Patent number: 10553711
    Abstract: Various aspects of tunable barrier transistors that can be used in high power electronics are provided. In one example, among others, a tunable barrier transistor includes an inorganic semiconducting layer; a source electrode including a nano-carbon film disposed on the inorganic semiconducting layer; a gate dielectric layer disposed on the nano-carbon film; and a gate electrode disposed on the gate dielectric layer over at least a portion of the nano-carbon film. The nano-carbon film can form a source-channel interface with the inorganic semiconducting layer. A gate field produced by the gate electrode can modulate a barrier height at the source-channel interface. The gate field may also modulate a barrier width at the source-channel interface.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: February 4, 2020
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Maxime G. Lemaitre, Xiao Chen, Bo Liu, Mitchell Austin McCarthy, Andrew Gabriel Rinzler
  • Patent number: 10551313
    Abstract: Surface plasmon resonance (SPR) based sensing systems and methods for sensing rhythmic beating characteristics of living cells are provided. An SPR based sensing system can include: an SPR sensing surface capable of generating SPR upon stimulation by incident light and configured to sense contractions, expansions, and/or movements of a plurality of living cells on the SPR sensing surface; and a cell culture module for culturing the living cells on the SPR sensing surface. In addition, the SPR based sensing system can perform a real-time analysis of one or more analytes secreted from the living cells by including a coating on the SPR sensing surface.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: February 4, 2020
    Assignee: The Florida International University Board of Trustees
    Inventors: Chenzhong Li, Maedeh Mozneb, Amirali Nilchian
  • Patent number: 10548943
    Abstract: A method for treating a patient suffering from one of septic shock, acute kidney injury, severe hypotension, cardiac arrest, and refractory hypotension, but not from myocardial infarction, is provided. The method includes administering a therapeutically effective dose of Angiotensin II, or Ang II, to the patient.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: February 4, 2020
    Assignee: The George Washington University a Congressionally Chartered Not-for-Profit Corporation
    Inventor: Lakhmir S. Chawla
  • Patent number: 10549022
    Abstract: An extracorporeal gas exchange device includes a housing, a rigid shaft rotatable within the housing, a plurality of agitation mechanisms positioned on the rigid shaft, and a plurality of hollow gas permeable fibers adapted to permit diffusion of gas between fluid flowing within the housing and an interior of the plurality of hollow gas permeable fibers. The plurality of hollow gas permeable fibers are positioned radially outward from the plurality of agitation mechanisms. The rotational speed of the rigid shaft is adjustable independent of the flow rate of fluid through the housing.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: February 4, 2020
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Richard Garrett Jeffries, William J. Federspiel, Brian Joseph Frankowski
  • Patent number: 10549265
    Abstract: A highly effective catalyst for the preparation of diethyl oxalate using carbon monoxide using Pd/?-Al2O3 and CeO2 as a promoter. High conversion rates with greatly extended catalyst life is achieved with the CeO2-enhanced Pd catalysts. The catalysts can be used for the production of high-value diethyl oxalate, and eventually ethylene glycol, from coal-derived syngas.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 4, 2020
    Assignee: University of Wyoming
    Inventors: Maohong Fan, Erlei Jin
  • Patent number: 10548911
    Abstract: Disclosed are methods of treating fibrosis in a patient in need thereof that includes administering to the patient an amount of an active agent, as identified herein, that is therapeutically effective to inhibit myofibroblast formation and thereby treat the fibrosis. Also disclosed is a recombinant cell line that includes a recombinant gene that expresses a detectable expression product in a dose-dependent response to TGF?, as well as methods of identifying a compound that inhibits TGF?-mediated expression of the detectable expression product.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: February 4, 2020
    Assignee: University of Rochester
    Inventors: Richard P. Phipps, Collynn Woeller
  • Patent number: 10548544
    Abstract: A method for forming an optimized image of a subject includes steps of acquiring a plurality of one-dimensional images, generating a measured sinogram from the plurality of one-dimensional images, and determining a plurality of trial images. In the step of acquiring, the method acquires a plurality of one-dimensional images of the subject captured by a rotating-slit imager having (a) a detector, and (b) a slit collimator having a slit oriented at one of a respective plurality of slit-rotation angles, relative to the subject, about a longitudinal axis substantially perpendicular to a front surface of the detector. In the step of determining, the method iteratively determines a plurality of trial images each having a respective trial sinogram. The optimized image is one of the plurality of trial images and its corresponding trial sinogram differs from the measured sinogram by less than a predetermined tolerance.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: February 4, 2020
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Lars R. Furenlid, Xin Li
  • Patent number: 10548505
    Abstract: A magnetic resonance method and system are provided for magnetic resonance (MR) image-guided insertion of an object into a biological tissue along a predetermined trajectory. The trajectory provides a path between a starting point and a target site within the tissue. Sufficiently high resolution images can be generated in real time to precisely guide the needle placement. A compressed sensing approach is used to generate the images based on minimization of a cost function, where the cost function is based on the predetermined needle path, artifact effects associated with the needle, the negligible changes in the images away from the trajectory, and the limited differences between successive images. The improved combination of spatial and temporal resolution facilitates an insertion procedure that can be continuously adjusted to accurately follow a predetermined trajectory in the tissue, without interruptions to obtain verification images.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: February 4, 2020
    Assignees: Siemens Healthcare GmbH, The Johns Hopkins University
    Inventors: Eva Rothgang, Arne Hengerer, Lars Lauer, Jan Fritz, Paul Bottomley, Wesley David Gilson, Robert Grimm
  • Patent number: 10549099
    Abstract: A technology is described for an electronic peripheral nerve stimulation system. The electronic nerve stimulation system can include a stimulation device and an electrode array. The stimulation device can be operable to generate a high-frequency alternating current. The electrode array can be operable to apply the high-frequency alternating current received from the stimulation device to selected subpopulations of peripheral nerve fibers within a peripheral nerve to block transmission of neural signals along the selected subpopulations of peripheral nerve fibers within the peripheral nerve.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: February 4, 2020
    Assignee: University of Utah Research Foundation
    Inventors: David Kluger, Christopher Duncan, David Page, Gregory Clark, Tyler Davis, Suzanne Wendelken
  • Patent number: 10548998
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: February 4, 2020
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10548860
    Abstract: Formulations and methods are provided for improving the function, i.e. clinical outcome, of solid organ transplants. Lung transplantation is of particular interest. In the methods of the invention, a nanoparticle formulation comprising an effective dose of an iron chelator active agent in nanoparticle form, including without limitation, deferoxamine (DFO), deferasirox (DFX), and deferiprone (DFP), etc. suspended in a carrier compatible with the tissue of interest, is topically applied to the surface of tissues at the site of anastomosis. The nanoparticles are comprised of the active agent and a pharmaceutically acceptable stabilizer.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: February 4, 2020
    Assignees: The Board Of Trustees of The Leland Stanford Junior University, The United States Government as Represented By The Department Of Veterans Affairs, The Johns Hopkins University
    Inventors: Mark R. Nicolls, Jayakumar Rajadas, Geoffrey C. Gurtner, Xinguo Jiang, Gundeep Dhillon, Gregg L. Semenza
  • Patent number: 10548519
    Abstract: Pulse oximeter devices include a first light emitting element that emits red light, a second light emitting element that emits green light or IR light; and a sensor element that detects red and green (or IR) light and that outputs signals representing detected red and green (or IR) light. The pulse oximeter device further includes a flexible substrate, wherein the first light emitting element, the second light emitting element and the sensor element are formed on the flexible substrate. The sensor element is configured to detect the emitted red and green light transmitted through tissue containing blood, and in certain aspects, the sensor element is configured to detect the emitted red and green (or IR) light reflected by tissue containing blood. A signal processing element (e.g., a processor) receives and processes the signals representing detected red and green (or IR) light output by the sensor element to produce signals representing blood oxygenation content.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 4, 2020
    Assignee: The Regents of the University of California
    Inventors: Ana Claudia Arias, Claire Lochner, Adrien Pierre, Yasser Khan