Patents Assigned to X-Fab Semiconductor Foundries, AG
  • Publication number: 20120211747
    Abstract: A PN junction includes first and second areas of silicon, wherein one of the first and second areas is n-type silicon and the other of the first and second areas is p-type silicon. The first area has one or more projections which at least partially overlap with the second area, so as to form at least one cross-over point, the cross-over point being a point at which an edge of the first area crosses over an edge of the second area.
    Type: Application
    Filed: August 28, 2009
    Publication date: August 23, 2012
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Paul Ronald Stribley, Soon Tat Kong
  • Publication number: 20120211868
    Abstract: A capacitor has first and second conducting plates and a dielectric region between the plates, wherein the dielectric region comprises two dielectric materials for each of which the variation of capacitance with voltage can be approximated by a polynomial having a linear coefficient and a quadratic coefficient, and wherein the quadratic coefficients of the two dielectric materials are of opposite sign. The capacitor comprises for example a first capacitor (42) and a second capacitor (44) that one connected in an anti-parallel manner.
    Type: Application
    Filed: September 23, 2009
    Publication date: August 23, 2012
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Paul Ronald Stribley, Soon Tat Kong, David John Verity
  • Patent number: 8247884
    Abstract: Disclosed is a semiconductor structure for producing a handle wafer contact in trench insulated SOI discs which may be used as a deep contact (7, 6, 30?) to the handle wafer (1) of a thick SOI disc as well as for a trench insulation (40). Therein, the same method steps are used for both structures which are used as deep contact to the handle wafer of the thick SOI disc as well as trench insulation.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 21, 2012
    Assignee: X-Fab Semiconductor Foundries AG
    Inventor: Ralf Lerner
  • Publication number: 20120193646
    Abstract: A method of manufacturing an Organic Light Emitting Diode (OLED). The method comprises using a solution or a solvent for removing a photo-resist used for patterning, which photo-resist is at least partly covered with a material other than photo-resist. The method of manufacturing the OLED thus comprises a lift-off process. The new method provides the benefits of low cost manufacturing and high OLED performance.
    Type: Application
    Filed: August 12, 2009
    Publication date: August 2, 2012
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Dong Zhang, Sang Sool Koo
  • Publication number: 20120187461
    Abstract: A window opening in a semiconductor component is produced on the basis of a gate structure which serves as an efficient etch resist layer in order to reliably etch an insulation layer stack without exposing the photosensitive semiconductor area. The polysilicon in the gate structure is then removed on the basis of an established gate etching process, with the gate insulation layer preserving the integrity of the photosensitive semiconductor material.
    Type: Application
    Filed: September 30, 2009
    Publication date: July 26, 2012
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Wolfgang Einbrodt, Daniel Gaebler
  • Patent number: 8222679
    Abstract: A semiconductor device with an integrated circuit on a semiconductor substrate comprises a Hall effect sensor in a first active region and a lateral high voltage MOS transistor in a second active region. The semiconductor device of the present invention is characterized in that the structure of the integrated Hall effect sensor is strongly related with the structure of a high-voltage DMOS transistor. The integrated Hall effect sensor is in some features similar to a per se known high-voltage DMOS transistor having a double RESURF structure. The control contacts of the Hall effect sensor correspond to the source and drain contacts of the high-voltage DMOS transistor. The semiconductor device of the present invention allows a simplification of the process integration.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: July 17, 2012
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Thomas Uhlig, Felix Fuernhammer, Christoph Ellmers
  • Patent number: 8207031
    Abstract: Methods of forming, on a substrate, a first lateral high-voltage MOS transistor and a second lateral high-voltage MOS transistor complementary to said first one are disclosed. According to one embodiment, the method includes (1) providing a substrate of a first conductivity type including a first active region for said first lateral high-voltage MOS transistor and a second active region for said second lateral high-voltage MOS transistor and (2) forming at least one first doped region of the first conductivity type in the first active region and forming in the second active region a drain extension region of the second conductivity type extending from a substrate surface to an interior of the substrate, including a concurrent implantation of dopants through openings of one and the same mask into the first and second active regions.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 26, 2012
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Christoph Ellmers, Thomas Uhlig, Felix Fuernhammer, Michael Stoisiek, Michael Gross
  • Patent number: 8190415
    Abstract: A method for designing a first vertical MOS power transistor having a specified design power level. The method comprises the steps of composing a layout of the vertical MOS power transistor as a combination of at least partly differing layout part pieces, each of the part pieces having known design data, the part pieces including at least one first layout part piece comprising a given number of single transistor cells, and adjusting the specified design power level of the first vertical MOS power transistor by using the known design data of the part pieces and based on the layout combination of the part pieces.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: May 29, 2012
    Assignees: X-FAB Semiconductor Foundries AG, alpha microelectronics GmbH
    Inventors: Ralf Lerner, Wolfgang Miesch
  • Patent number: 8187908
    Abstract: In an integrated circuit, a light sensitive area is protected against radiation by arranging a light blocking layer sequence (504) on top of the light sensitive area. The light blocking layer sequence comprises one or several metal layers (504a) and a silicon layer (503b, 1) for the purpose of absorption. A moth eye structure is provided on the silicon layer. Thereby, a radiation incident by reflection is minimized in such a way that also stray light can effectively be kept from the light sensitive area below the light blocking layer sequence (504).
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: May 29, 2012
    Assignee: X-Fab Semiconductor Foundries AG
    Inventor: Daniel Gaebler
  • Publication number: 20120126377
    Abstract: A semiconductor device comprising: a p or p+ doped portion; an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion; an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and said at least one doped portion meet; and at least one additional portion which is arranged for significantly reducing the variation of the electric field strength in said region when a voltage difference is applied between the doped portions.
    Type: Application
    Filed: May 14, 2010
    Publication date: May 24, 2012
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Alexander Dietrich Holke, Deb Kumar Pal, Kia Yaw Kee, Hao Yang
  • Patent number: 8129255
    Abstract: The invention relates to a process for and an arrangement of the connection of processed semiconductor wafers (1, 2) wherein, in addition to the firm connection, there is an electric connection (5) between the semiconductor wafers and/or the electronic structures (3) supporting them. For this purpose, low-melting structured intermediate glass layers (6; 6a) are used as insulating layers and as an electric connection in the form of electrically conductive solder (5) on a glass basis in order to achieve a firm connection.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: March 6, 2012
    Assignee: X-Fab Semiconductors Foundries AG
    Inventor: Roy Knechtel
  • Patent number: 8120121
    Abstract: A semiconductor device including a first transistor in a substrate, a second transistor in the substrate, and a further device in the substrate. The second transistor and the further device are arranged to operate at a second voltage which is higher than a first voltage. The first voltage is the (normal) voltage of operation of the first transistor, and the first transistor is isolated from the second voltage.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: February 21, 2012
    Assignees: X-Fab Semiconductor Foundries AG, Melexis Tessenderlo N.V.
    Inventors: John Nigel Ellis, Piet De Pauw
  • Publication number: 20120032356
    Abstract: The invention relates to production of alignment marks on a semiconductor wafer with the use of a light-opaque layer (17), wherein, before the light-opaque layer (17) is applied, by means of the etching of cavities, free-standing pillar groups are produced in the cavities and then the light-opaque layer (17) is applied. The pillars are produced with a height of above 1 ?m, which, moreover, is greater than a thickness of the light-opaque layer (17) to be applied in the cavities as layer portions (17x; 17y). The cavities are formed with a width such that they are filled only partly with the layer portions (17x; 17y) when the light-opaque layer (17) is applied. The high, freely positioned alignment marks produced by the method as pillar series (16x; 16y), having a plurality of individual pillars (16a; 16a?) in a cavity (12a, 12y), of a scribing trench on the semiconductor wafer are likewise described.
    Type: Application
    Filed: December 23, 2009
    Publication date: February 9, 2012
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Steffen Reymann, Gerhard Fiehne, Uwe Eckoldt
  • Publication number: 20120032204
    Abstract: A method of manufacturing an Organic Light Emitting Diode (OLED). A substrate (101) is provided, and a plurality of pixel electrodes (102) is formed on the substrate resulting in at least one gap (105) between two adjacent pixel electrodes. A dielectric material (103) is deposited in the gap. The resulting structure is subjected to a process which ensures that at least a portion of the surface of the pixel electrodes is not covered by the dielectric material. At least the portion of the surface of the pixel electrodes is covered with a layer of an organic compound so as to form the OLED.
    Type: Application
    Filed: April 16, 2009
    Publication date: February 9, 2012
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Dong Zhang, Sang Sool Koo
  • Patent number: 8110468
    Abstract: A DMOS-transistor having enhanced dielectric strength includes a first well region. A highly doped source region is located in the first well region and is complementarily doped thereto. A highly doped bulk connection region is located in the first well region and has the same type of doping as the first well region. A gate electrode and a gate insulation layer for forming a transistor channel are included on a surface of the first well region. The DMOS-transistor further comprises an isolation structure, a highly doped drain doping region, and a second well complementarily doped to the first well region. The second well accommodates the first well region and the drain doping region. A highly doped region is formed at least adjacent to the second well and has the same type of doping as the second well for enhancing the dielectric strength of the highly doped source region.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: February 7, 2012
    Assignee: X-FAB Semiconductor Foundries AG
    Inventor: Andreas Roth
  • Patent number: 8058086
    Abstract: By means of an RIE etch process for silicon (3), a pin-type structure (4,4a) without crystal defects is formed with high aspect ratio and with nano dimensions on the surface of silicon wafers without any additional patterning measures (e-beam, interference lithography, and the like) by selecting the gas components of the etch plasma in self-organization wherein, among others, a broadband antireflective behavior is obtained that may be applicable in many fields.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: November 15, 2011
    Assignees: X-FAB Semiconductor Foundries AG, Technische Universitaet Ilmenau
    Inventors: Konrad Bach, Daniel Gaebler, Michael Fischer, Mike Stubenrauch
  • Patent number: 8053897
    Abstract: The invention relates to a method for producing structures which make it possible to form a trench insulation and to bring into contact SOI wafers provided with active thick layers and which are easily processable. For this purpose, a carrier wafer electric contact and the insulation trench are provided with components exhibiting high-blocking capability of insertion into an integrated circuit SOI wafer. A narrow trench for an insulating trench (8) and a large trench for a carrier wafer contact (9) are etched up to an insulating oxide layer (2) and are buried by a masking layer which is thicker than the buried oxide layer (2). In the large trench (9), a polysilicon spacer (12) remains on the sidewalls, respectively, in the form of a predeposited polysilicon layer (11) rest. The adjustment of the polysilicon etching makes it possible to obtain the spacer (12) provided with a desired height.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: November 8, 2011
    Assignee: X-Fab Semiconductor Foundries AG
    Inventor: Ralf Lerner
  • Patent number: 8021906
    Abstract: Disclosed are methods and microsystems for vertically through-plating (6) cover plates (5) for microsystem components (2, 2a) by means of a conductive solder glass (8). Said methods and microsystems make it possible to simplify through-plating, reduce the failure rate, and increase reliability.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 20, 2011
    Assignee: X-Fab Semiconductor Foundries AG
    Inventor: Roy Knechtel
  • Patent number: 7994806
    Abstract: Embodiments of the present disclosure relate to a system and method for testing an embedded circuit in a semiconductor arrangement as part of an overall circuit that is located on a semiconductor wafer, the system and method comprising an arrangement comprising an overall circuit with at least one input and output. The overall circuit may be provided with an embedded circuit that is not directly connected to the inputs and outputs or may be connected thereto by being specially switched. Switching elements and test islands that are connected thereto may be provided such that the input or the output of the embedded circuit may be connected to the test islands via the switching elements in case of a test. The switching elements may be switched to said test mode in case of a test by applying a voltage to the test island, or the switching elements may be switched in this manner.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: August 9, 2011
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Holger Halberla, Soeren Lohbrandt
  • Patent number: 7989308
    Abstract: The aim of the invention is to integrate low-voltage logic elements and high-voltage power elements in one and the same silicon circuit. Said aim is achieved by dielectrically chip regions having different potentials from each other with the aid of isolation trenches (10). In order to prevent voltage rises at sharp edges on the bottom of the isolation trenches, said edges are rounded in a simple process, part of the insulating layer (2) being isotropically etched.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: August 2, 2011
    Assignee: X-FAB Semiconductor Foundries AG
    Inventors: Ralf Lerner, Uwe Eckoldt, Thomas Oetzel