Patents Examined by Abul Kalam
  • Patent number: 9177944
    Abstract: A semiconductor device with a stacked power converter is described. In some examples, a semiconductor device includes: a first integrated circuit (IC) die having bond pads and solder bumps, the bond pads configured for wire-bonding; and a second IC die mounted on the first IC die, the second IC die having an active side and a backside opposite the active side, the second IC die including bond pads on the active side configured for wire-bonding, and solder bumps disposed on a backside opposite the active side; where the solder bumps of the first IC die are electrically and mechanically coupled to the solder bumps of the second IC die to form bump bonds.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: November 3, 2015
    Assignee: XILINX, INC.
    Inventor: Bernard J. New
  • Patent number: 9136418
    Abstract: Embodiments generally relate to optoelectronic semiconductor devices such as solar cells. In one aspect, a device includes an absorber layer made of gallium arsenide (GaAs) and having only one type of doping. An emitter layer is located closer than the absorber layer to a back side of the device and is made of a different material and having a higher bandgap than the absorber layer. A heterojunction is formed between the emitter layer and the absorber layer, and a p-n junction is formed between the emitter layer and the absorber layer and at least partially within the different material at a location offset from the heterojunction. An intermediate layer is located between the absorber layer and the emitter layer and provides the offset of the p-n junction from the heterojunction, and includes a graded layer and an ungraded back window layer.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: September 15, 2015
    Assignee: ALTA DEVICES, INC.
    Inventors: Hui Nie, Brendan M. Kayes, Isik C. Kizilyalli
  • Patent number: 9136417
    Abstract: Embodiments generally relate to optoelectronic semiconductor devices such as photovoltaic cells. In one aspect, a method for forming a device includes forming an absorber layer made of gallium arsenide (GaAs) and having one type of doping, and forming an emitter layer made of a different material and having a higher bandgap than the absorber layer. An intermediate layer can be formed between emitter and absorber layers. A heterojunction and p-n junction are formed between the emitter layer and the absorber layer, where the p-n junction is formed at least partially within the different material at a location offset from the heterojunction. A majority of the absorber layer can be outside of a depletion region formed by the p-n junction. The p-n junction causes a voltage to be generated in the cell in response to the cell being exposed to light at a front side.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: September 15, 2015
    Assignee: ALTA DEVICES, INC.
    Inventors: Hui Nie, Brendan M. Kayes, Isik C. Kizilyalli
  • Patent number: 9130005
    Abstract: A bipolar junction transistor includes a first trench element isolation film, a second trench element isolation film, a first base region, a second base region, a collector region, a first well, a second well, an emitter, a collector, and bases. The second well is formed by implanting an n-type impurity into the semiconductor substrate, and the emitter is formed by implanting the n-type impurity into the emitter region between the first trench element isolation film and the second well. The collector is formed by implanting the n-type impurity into the collector region between the first well and the second trench element isolation film, and the bases are formed by implanting the p-type impurity into the first base region and into the second base region between the emitter region and the second well.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: September 8, 2015
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Jae Hyun Yoo, Jong Min Kim
  • Patent number: 9111955
    Abstract: An improved base for a NPN bipolar transistor. The base region is formed with Boron and Indium dopants for improved beta early voltage product and reduced base resistance.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: August 18, 2015
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 9105716
    Abstract: A semiconductor device includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of the first conductivity type provided on a main surface of the first semiconductor layer and having a lower impurity concentration than that of the first semiconductor layer; a third semiconductor layer of a second conductivity type provided on the second semiconductor layer; a fourth semiconductor layer of the first conductivity type selectively provided on the third semiconductor layer; a gate electrode provided in a trench passing through the third semiconductor layer and reaching the second semiconductor layer; a first main electrode contacting the fourth semiconductor layer and contacting the third semiconductor layer through a contact groove provided to pass through the fourth semiconductor layer between the contiguous gate electrodes; a second main electrode provided on an opposite surface to the main surface of the first semiconductor layer; and a fifth semiconductor layer of the s
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: August 11, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miwako Akiyama, Yusuke Kawaguchi, Yoshihiro Yamaguchi
  • Patent number: 9099539
    Abstract: Microfeature workpieces having interconnects and conductive backplanes and associated systems and methods are disclosed herein. One such device includes a semiconductor substrate having integrated circuitry and terminals electrically coupled to the integrated circuitry. The device also includes electrically conductive interconnects extending through at least a portion of the semiconductor substrate and electrically coupled to corresponding terminals. The device further includes a conductive backplane assembly having a conductive layer at a back side of the semiconductor substrate. One or more of the interconnects are electrically coupled to the conductive layer at the back side of the semiconductor substrate.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 4, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 9093591
    Abstract: Embodiments generally relate to optoelectronic semiconductor devices such as solar cells. In one aspect, a device includes an absorber layer made of gallium arsenide (GaAs) and having only one type of doping. An emitter layer is located closer than the absorber layer to a back side of the device and is made of a different material and having a higher bandgap than the absorber layer. A heterojunction is formed between the emitter layer and the absorber layer, and a p-n junction is formed between the emitter layer and the absorber layer and at least partially within the different material at a location offset from the heterojunction. An intermediate layer is located between the absorber layer and the emitter layer and provides the offset of the p-n junction from the heterojunction, and includes a graded layer and an ungraded back window layer.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: July 28, 2015
    Assignee: ALTA DEVICES, INC.
    Inventors: Hui Nie, Brendan M. Kayes, Isik C. Kizilyalli
  • Patent number: 9087840
    Abstract: A strip-line includes a ground plane extending through a plurality of dielectric layers over a substrate; a signal line over the substrate and on a side of the ground plane; a first plurality of metal strips under the signal line and in a first metal layer, wherein the first plurality of metal strips is parallel to each other, and is spaced apart from each other by spaces; and a second plurality of metal strips under the signal line and in a second metal layer over the first metal layer. The second plurality of metal strips vertically overlaps the spaces. The first plurality of metal strips is electrically coupled to the second plurality of metal strips through the ground plane, and no via physically contacts the first plurality of metal strips and the second plurality of metal strips.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: July 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Ling Lin, Hsiao-Tsung Yen, Ho-Hsiang Chen, Chin-Wei Kuo, Chewn-Pu Jou
  • Patent number: 9082919
    Abstract: Embodiments generally relate to optoelectronic semiconductor devices such as photovoltaic cells. In one aspect, a method for forming a device includes forming an absorber layer made of gallium arsenide (GaAs) and having one type of doping, and forming an emitter layer made of a different material and having a higher bandgap than the absorber layer. An intermediate layer can be formed between emitter and absorber layers. A heterojunction and p-n junction are formed between the emitter layer and the absorber layer, where the p-n junction is formed at least partially within the different material at a location offset from the heterojunction. A majority of the absorber layer can be outside of a depletion region formed by the p-n junction. The p-n junction causes a voltage to be generated in the cell in response to the cell being exposed to light at a front side.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: July 14, 2015
    Assignee: ALTA DEVICES, INC.
    Inventors: Hui Nie, Brendan M. Kayes, Isik C. Kizilyalli
  • Patent number: 9070788
    Abstract: An circuit supporting substrate includes a transistor and a capacitor. The transistor includes a first semiconductor layer and a gate stack located on the first semiconductor layer. The gate stack includes a metal layer and a first high-k dielectric layer. A gate spacer is located on sidewalls of the gate stack. The first high-k dielectric layer is located between the first semiconductor layer and the metal layer and between the gate spacer and sidewalls of the metal layer. A first silicide region is located on a first source/drain region. A second silicide region is located on a second source/drain region. The capacitor includes a first terminal that comprises a third silicide region located on a portion of the second semiconductor. A second high-k dielectric layer is located on the silicide region. A second terminal comprises a metal layer that is located on the second high-k dielectric layer.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: June 30, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce Doris, Ali Khakifirooz, Ghavam G. Shahidi
  • Patent number: 9059250
    Abstract: A combination of gases including at least a fluorocarbon gas, oxygen, and an inert sputter gas is employed to etch at least one opening into an organic photoresist. The amount of oxygen is controlled to a level that limits conversion of a metallic nitride material in an underlying hard mask layer to a metal oxide, and causes organic polymers generated from the organic photoresist to cover peripheral regions of each opening formed in the organic photoresist. The hard mask layer is etched with a taper by the oxygen-limited fluorine-based etch chemistry provided by the combination of gases. The taper angle can be controlled such that a shrink ratio of the lateral dimension by the etch can exceed 2.0.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Samuel S. Choi, Wai-kin Li
  • Patent number: 9048366
    Abstract: Embodiments generally relate to optoelectronic semiconductor devices such as photovoltaic cells. In one aspect, a method for forming a device includes forming an absorber layer made of gallium arsenide (GaAs) and having one type of doping, and forming an emitter layer made of a different material and having a higher bandgap than the absorber layer. An intermediate layer can be formed between emitter and absorber layers. A heterojunction and p-n junction are formed between the emitter layer and the absorber layer, where the p-n junction is formed at least partially within the different material at a location offset from the heterojunction. A majority of the absorber layer can be outside of a depletion region formed by the p-n junction. The p-n junction causes a voltage to be generated in the cell in response to the cell being exposed to light at a front side.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: June 2, 2015
    Assignee: ALTA DEVICES, INC.
    Inventors: Hui Nie, Brendan M. Kayes, Isik C. Kizilyalli
  • Patent number: 9041057
    Abstract: A field effect transistor device includes a substrate, a silicon germanium (SiGe) layer disposed on the substrate, gate dielectric layer lining a surface of a cavity defined by the substrate and the silicon germanium layer, a metallic gate material on the gate dielectric layer, the metallic gate material filling the cavity, a source region, and a drain region.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin
  • Patent number: 9041056
    Abstract: According to one embodiment, a semiconductor device including: a substrate; a gate electrode formed above the substrate; a gate insulating film formed under the gate electrode; a channel layer formed under the gate insulating film by using a channel layer material; a source region and a drain region formed in the substrate so as to interpose the channel layer therebetween in a channel direction; and a source extension layer formed in the substrate between the channel layer and the source region so as to overlap a source-side end portion of the channel layer. The source extension layer forms a heterointerface with the channel layer. The heterointerface is a tunnel channel for carries.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 26, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshitaka Miyata, Kanna Adachi, Shigeru Kawanaka
  • Patent number: 9040961
    Abstract: An organic light emitting diode (OLED) display includes a substrate main body, a plurality of organic light emitting elements on the substrate main body, a column spacer on the substrate main body and between two or more of the plurality of organic light emitting elements, and an encapsulation thin film covering at least one of the organic light emitting elements and having regions divided by the column spacer.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: May 26, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Tae-Jin Kim
  • Patent number: 9035411
    Abstract: Improvement of signal integrity, a size reduction of a device, and the like are realized. A semiconductor integrated circuit section 11 and an optical wiring section 21 are electrically connected to each other by a connection section 31 provided between a face of the semiconductor integrated circuit section 11 and a face of the optical wiring section 21 facing each other. An electrical wiring 23 is provided in an optical wiring section 21. The electrical wiring 23 of the optical wiring section 21 functions as a global wiring electrically connecting between a plurality of circuit blocks CB provided in the semiconductor integrated circuit section 11.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: May 19, 2015
    Assignees: SONY CORPORATION, NEC CORPORATION
    Inventors: Toshihide Ueno, Masao Kinoshita, Takanori Shimizu
  • Patent number: 9024343
    Abstract: A light emitting device includes a substrate, a light emitting element, an additional light emitting element, a light reflecting resin member, an electrically conductive wire, an additional electrically conductive wire, and a sealing member. The substrate is provided with a conductor wiring. The light emitting element is mounted on the substrate. The electrically conductive wire electrically connects the conductor wiring and the light emitting element with at least a part of the electrically conductive wire being embedded in the light reflecting resin member. The additional electrically conductive wire electrically connects the light emitting element and the additional light emitting element, with the additional electrically conductive wire not being in contact with the light reflecting resin member. The sealing member is disposed in a region surrounded by the light reflecting resin member to cover the light emitting element.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 5, 2015
    Assignee: Nichia Corporation
    Inventors: Motokazu Yamada, Mototaka Inobe
  • Patent number: 9011717
    Abstract: Phosphor compositions, white phosphor compositions, methods of making white phosphor compositions, tinted white phosphor compositions, methods of making tinted white phosphor compositions, LEDs, methods of making LEDs, light bulb structures, paints including phosphor compositions, polymer compositions including phosphor compositions, ceramics including phosphor compositions, and the like are provided.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: April 21, 2015
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: William M. Yen, Zhiyi He, Sergei Basun, Xiao-jun Wang, Gennaro J. Gama
  • Patent number: 9006878
    Abstract: A multilayered integrated optical and circuit device. The device has a first substrate comprising at least one integrated circuit chip thereon, which has a cell region and a peripheral region. Preferably, the peripheral region has a bonding pad region, which has one or more bonding pads and an antistiction region surrounding each of the one or more bonding pads. The device has a second substrate with at least one or more deflection devices thereon coupled to the first substrate. At least one or more bonding pads are exposed on the first substrate. The device has a transparent member overlying the second substrate while forming a cavity region to allow the one or more deflection devices to move within a portion of the cavity region to form a sandwich structure including at least a portion of the first substrate, a portion of the second substrate, and a portion of the transparent member.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: April 14, 2015
    Assignee: Miradia Inc.
    Inventors: Xiao “Charles” Yang, Dongmin Chen, Philip Chen