Patents Examined by Abul Kalam
  • Patent number: 8994130
    Abstract: A magnetic memory element includes: a first magnetization free layer formed of a ferromagnetic material having perpendicular magnetic anisotropy; a second magnetization free layer provided near the first magnetization free layer and formed of a ferromagnetic material having in-plane magnetic anisotropy; a reference layer formed of a ferromagnetic material having in-plane magnetic anisotropy; and a non-magnetic layer provided between the second magnetization free layer and the reference layer. The first magnetization free layer includes: a first magnetization fixed region of which magnetization is fixed, a second magnetization fixed region of which magnetization is fixed, and a magnetization free region which is connected to the first magnetization fixed region and the second magnetization fixed region, and of which magnetization can be switched. The second magnetization free layer is included in the first magnetization free layer in a plane parallel to a substrate.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: March 31, 2015
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Tetsuhiro Suzuki, Kiyokazu Nagahara, Nobuyuki Ishiwata, Norikazu Ohshima
  • Patent number: 8975618
    Abstract: A resonant tunneling device includes a first semiconductor material with an energy difference between valence and conduction bands of Eg1, and a second semiconductor material with an energy difference between valence and conduction bands of Eg2, wherein Eg1 and Eg2 are different from one another. The device further includes an energy selectively transmissive interface connecting the first and second semiconductor materials.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 10, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: James Andrew Robert Dimmock, Stephen Day, Matthias Kauer, Jonathan Heffernan
  • Patent number: 8946745
    Abstract: The present invention is related to a supporting substrate for manufacturing vertically-structured semiconductor light emitting device and a vertically-structured semiconductor light emitting device using the same, which minimize damage and breaking of a multi-layered light-emitting structure thin film separated from a sapphire substrate during the manufacturing process, thereby improving the whole performance of the semiconductor light emitting device.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: February 3, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventor: Tae Yeon Seong
  • Patent number: 8932961
    Abstract: An illustrative test structure is disclosed herein that includes a plurality of first line features and a plurality of second line features. In this embodiment, each of the second line features have first and second opposing ends and the first and second line features are arranged in a grating pattern such that the first ends of the first line features are aligned to define a first side of the grating structure and the second ends of the first features are aligned to define a second side of the grating structure that is opposite the first side of the grating structure. The first end of the second line features has a first end that extends beyond the first side of the grating structure while the second end of the second line features has a first end that extends beyond the second side of the grating structure.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: January 13, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sohan Mehta, Tong Qing Chen, Vikrant Chauhan, Ravi Srivastava, Catherine Labelle, Mark Kelling
  • Patent number: 8927346
    Abstract: An electrically, thermally, or electrically and thermally actuated device is disclosed herein. The device includes a substrate, a first electrode established on the substrate, an active region established on the electrode, and a second electrode established on the active region. A pattern is defined in at least one of the substrate, the first electrode, the second electrode, or the active region. At least one of grain boundaries are formed within, or surface asperities are formed on, at least one of the electrodes or the active region. The pattern controls the at least one of the grain boundaries or surface asperities.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: January 6, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Theodore I Kamins
  • Patent number: 8907449
    Abstract: Proposed are thin film MIM capacitors with which deterioration of insulating properties and leakage current properties can be sufficiently inhibited. Also proposed is a manufacturing method for the thin film MIM capacitors. For the thin film MIM capacitor (1), a lower electrode (3), a base metal thin film (4), the dielectric thin film (5) and the upper electrode (6) are formed to approximately the same area. The lower electrode (3) has a configuration that differs from the other films to form a part for external connection. The side surface of the base metal thin film (4), the dielectric thin film (5), and the upper electrode (6) are covered with a base metal oxide (7) that comprises the same metal atoms as the base metal thin film (4).
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: December 9, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Tomoyuki Takahashi, Kentarou Morito, Yuichi Sasajima, Yoshinari Take
  • Patent number: 8907384
    Abstract: Disclosed herein are methods of preparing and using doped MWNT electrodes, sensors and field-effect transistors. Devices incorporating doped MWNT electrodes, sensors and field-effect transistors are also disclosed.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: December 9, 2014
    Assignee: NanoSelect, Inc.
    Inventors: Salvatore J. Pace, Piu Francis Man, Ajeeta Pradip Patil, Kah Fatt Tan
  • Patent number: 8877613
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 4, 2014
    Assignees: Renesas Electronics Corporation, Renesas Northern Japan Semiconductor, Inc.
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Patent number: 8871647
    Abstract: A group III nitride substrate in one embodiment has a surface layer. The surface layer contains 3 at. % to 25 at. % of carbon and 5×1010 atoms/cm2 to 200×1010 atoms/cm2 of a p-type metal element. The group III nitride substrate has a stable surface.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: October 28, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Keiji Ishibashi
  • Patent number: 8860096
    Abstract: An SRAM cell of a semiconductor device includes a load transistor, a driver transistor and an access transistor. First source/drains of the load, driver and access transistors are connected to a node. A power line, a ground line and a bit line are electrically connected to second source/drains of the load transistor, the driver transistor and the access transistor. The power line, the ground line and the bit line are disposed at substantially the same level to extend in a first direction. A word line is electrically connected to a gate of the access transistor to extend in a second direction perpendicular to the first direction. The word line is disposed at a different level from the level of the power line, the ground line and the bit line.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: October 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: OhKyum Kwon, Byungsun Kim, Taejung Lee
  • Patent number: 8860058
    Abstract: A light emitting assembly comprising a solid state device coupleable with a power supply constructed and arranged to power the solid state device to emit from the solid state device a first, relatively shorter wavelength radiation, and a down-converting luminophoric medium arranged in receiving relationship to said first, relatively shorter wavelength radiation, and which in exposure to said first, relatively shorter wavelength radiation, is excited to responsively emit second, relatively longer wavelength radiation. In a specific embodiment, monochromatic blue or UV light output from a light-emitting diode is down-converted to white light by packaging the diode with fluorescent organic and/or inorganic fluorescers and phosphors in a polymeric matrix.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 14, 2014
    Assignee: Cree, Inc.
    Inventors: Bruce Baretz, Michael A. Tischler
  • Patent number: 8829602
    Abstract: The invention includes a semiconductor structure having a gateline lattice surrounding vertical source/drain regions. In some aspects, the source/drain regions can be provided in pairs, with one of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The source/drain regions extending to the digit line can have the same composition as the source/drain regions extending to the memory storage devices, or can have different compositions from the source/drain regions extending to the memory storage devices. The invention also includes methods of forming semiconductor structures. In exemplary methods, a lattice comprising a first material is provided to surround repeating regions of a second material. At least some of the first material is then replaced with a gateline structure, and at least some of the second material is replaced with vertical source/drain regions.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 9, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8823029
    Abstract: Provided are a light emitting device and a method of manufacturing the same. A light emitting device includes an active layer; a first conductive semiconductor layer on the active layer; a second conductive semiconductor layer on the active layer so that the active layer is disposed between the first and second conductive semiconductor layers; and a photonic crystal structure comprising a first light extraction pattern on the first conductive semiconductor layer having a first period, and second light extraction pattern on the first conductive semiconductor layer having a second period, the first period being greater than ?/n, and the second period being identical to or smaller than ?/n, where n is a refractive index of the first conductive semiconductor layer, and ? is a wavelength of light emitted from the active layer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 2, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Sun Kyung Kim, Jin Wook Lee, Hyun Kyong Cho
  • Patent number: 8809971
    Abstract: A semiconductor component comprising a semiconductor body, a channel zone in the semiconductor body, a channel control electrode adjacent to the channel zone, and a dielectric layer between the channel zone and the channel control electrode, wherein the dielectric layer has a relative dielectric constant ?r with a negative temperature coefficient.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: August 19, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Frank Pfirsch
  • Patent number: 8796788
    Abstract: An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides a processing for forming improved source/drain features in the semiconductor device. Semiconductor devices with the improved source/drain features may prevent or reduce defects and achieve high strain effect resulting from epi layers. In an embodiment, the source/drain features comprises a second portion surrounding a first portion, and a third portion between the second portion and the semiconductor substrate, wherein the second portion has a composition different from the first and third portions.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: August 5, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsz-Mei Kwok, Hsueh-Chang Sung, Kuan-Yu Chen, Hsien-Hsin Lin
  • Patent number: 8786014
    Abstract: A vertical channel transistor array includes a plurality of embedded bit lines, a plurality of bit line contacts, a plurality of embedded word lines, and a current leakage isolation structure. An active area of a vertical channel transistor is defined by the semiconductor pillars. The embedded bit lines are disposed in parallel in a semiconductor substrate and extended in a column direction. Each of the bit line contacts is respectively disposed at a side of one of the embedded bit lines. The embedded word lines are disposed in parallel above the embedded bit lines and extended in a row direction. Besides, the embedded word lines and the semiconductor pillars in the same row are connected but spaced by a gate dielectric layer. The current leakage isolation structure is disposed at ends of the embedded bit lines to prevent current leakage between the adjacent bit line contacts.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: July 22, 2014
    Assignee: Powerchip Technology Corporation
    Inventor: Yukihiro Nagai
  • Patent number: 8772927
    Abstract: Semiconductor package structures are provided which are designed to have liquid coolers integrally packaged with first level chip modules. In particular, apparatus for integrally packaging a liquid cooler device within a first level chip package structure include structures in which a liquid cooler device is thermally coupled directly to the back side of an integrated circuit chip flip-chip mounted on flexible chip carrier substrate. The liquid cooler device is mechanically coupled to the package substrate through a metallic stiffener structure that is bonded to the flexible package substrate to provide mechanical rigidity to the flexible package substrate.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Raschid Jose Bezama, Evan George Colgan, Michael Gaynes, John Harold Magerlein, Kenneth C. Marston, Xiaojin Wei
  • Patent number: 8759192
    Abstract: A wiring trench is formed in an interlayer insulating film partway in the depth direction of the interlayer insulating film. A via hole is formed extending from the bottom of the wiring trench to the bottom of the interlayer insulating film. A capacitor recess is formed reaching the bottom of the interlayer insulating film. A conductive member is embedded in the wiring trench and via hole. A capacitor is embedded in the capacitor recess, including a lower electrode, a capacitor dielectric film and an upper electrode. The lower electrode is made of the same material as that of the conductive member and disposed along the bottom and side surface of the capacitor recess. A concave portion is formed on an upper surface of the lower electrode, and the capacitor dielectric film covers an inner surface of the concave portion. The upper electrode is embedded in the concave portion.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: June 24, 2014
    Assignee: Fujitsu Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8754498
    Abstract: A method of making an antifuse includes providing a substrate having a bit line diffusion region and a capacitor diffusion region. A gate dielectric layer is formed over the substrate, and a word line is formed on the gate dielectric layer. An oxide layer is formed on the capacitor diffusion region, in a separate process step from forming the gate dielectric layer. A select line contact is formed above and contacting the oxide layer to form a capacitor having the oxide layer as a capacitor dielectric layer of the capacitor. The select line contact is configured for applying a voltage to cause permanent breakdown of the oxide layer to program the antifuse.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: June 17, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yue-Der Chih, Chrong Jung Lin
  • Patent number: 8741681
    Abstract: A solid-state image pickup device includes an element isolation insulating film electrically isolating pixels on the surface of a well region; a first isolation diffusion layer electrically isolating the pixels under the element isolation insulating film; and a second isolation diffusion layer electrically isolating the pixels under the first isolation diffusion layer, wherein a charge accumulation region is disposed in the well region surrounded by the first and second isolation diffusion layers, the inner peripheral part of the first isolation diffusion layer forms a projecting region, an impurity having a conductivity type of the first isolation diffusion layer and an impurity having a conductivity type of the charge accumulation region are mixed in the projecting region, and a part of the charge accumulation region between the charge accumulation region and the second isolation diffusion layer is abutted or close to the second isolation diffusion layer under the projecting region.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: June 3, 2014
    Assignee: Sony Corporation
    Inventors: Keiji Tatani, Hideshi Abe, Masanori Ohashi, Atsushi Masagaki, Atsuhiko Yamamoto, Masakazu Furukawa