Patents Examined by Benjamin P. Sandvik
  • Patent number: 11849645
    Abstract: An integrated circuit includes a substrate, a bottom electrode, a dielectric layer, a metal-containing compound layer, a resistance switching element, and a top electrode. The bottom electrode is over the substrate, the bottom electrode having a bottom portion and a top portion over the bottom portion. The bottom portion of the bottom electrode has a sidewall slanted with respect to a sidewall of the top portion of the bottom electrode. The dielectric layer surrounds the bottom portion of the bottom electrode. The metal-containing compound layer surrounds the top portion of the bottom electrode. A top end of the sidewall of the bottom portion of the bottom electrode is higher than a bottom surface of the metal-containing compound layer. The resistance switching element is over the bottom electrode. The top electrode is over the resistance switching element.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Hao Liao, Hsi-Wen Tien, Chih-Wei Lu, Pin-Ren Dai, Chung-Ju Lee
  • Patent number: 11849593
    Abstract: An ultra-high-density vertical cross-point array comprises a plurality of horizontal line layers having horizontal lines interleaved with a plurality of vertical lines arranged in rows and columns. The vertical lines are interleaved with the horizontal lines such that a row of vertical lines is positioned between each consecutive pair of horizontal lines in each horizontal line layer. Each vertical line comprises a center conductor surrounded by a single or multi-layered memory film. Accordingly, when interleaved with the horizontal lines, two-terminal memory cells are integrally formed between the center conductor of each vertical line and each crossing horizontal line. By configuring the vertical and horizontal lines so that a row of vertical lines is positioned between each consecutive pair of horizontal lines, a unit memory cell footprint of just 2F2 may be realized.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: December 19, 2023
    Assignee: Unity Semiconductor Corporation
    Inventor: Bruce Lynn Bateman
  • Patent number: 11844287
    Abstract: A magnetic memory device includes a spin-orbit torque (SOT) induction spin Hall electrode and a free layer of a magnetic tunnel junction (MTJ) stack disposed on the spin Hall electrode which is a synthetic anti-ferromagnetic structure. The free layer has a magnetic moment which is askew of the long axis of the MTJ stack and askew the direction of current flow through the spin Hall electrode. The MTJ stack internally generates a magnetic field to switch the state of the free layer. The free layer includes a first layer separated from a second layer by a spacer layer, where the first layer and the second layer may have the same or different crystalline structures.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Min Lee, Shy-Jay Lin
  • Patent number: 11837524
    Abstract: A cooling device for integrated circuits. The device includes: a plurality TEC cooling cells arranged in an array, wherein each of the cells includes a controller coupled to at least one TEC device; and a single power connector that provides power to all the cells in the array. The controller of each cell in the array is operable to control the at least one TEC it is coupled to with power received from the single power connector.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: December 5, 2023
    Assignee: RAYTHEON COMPANY
    Inventors: Paul T. Hartin, Kalin Spariosu, Thomas T. Leise, David A. Vasquez, Michael R. Patrizi
  • Patent number: 11839133
    Abstract: An organic light-emitting diode (OLED) display includes an array of OLED pixels and an array of organic photodetector (OPD) pixels. An OLED pixel in the array of OLED pixels includes an OLED hole transport layer (HTL), an OLED electron transport layer (ETL), and an emissive layer positioned between the OLED HTL and the OLED ETL. An OPD pixel in the array of OPD pixels includes the OLED HTL, the OLED ETL, and an electron donor material positioned between the OLED HTL and the OLED ETL, wherein the OLED ETL functions as an electron acceptor material for the OPD pixel. In other embodiments, the OPD pixel may be configured differently.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: December 5, 2023
    Assignee: Apple Inc.
    Inventors: Markus Einzinger, Martijn Kuik, Mohammad Yeke Yazdandoost, Niva A. Ran
  • Patent number: 11834330
    Abstract: An example of a cavity structure comprises a cavity substrate comprising a substrate surface, a cavity extending into the cavity substrate, the cavity having a cavity bottom and cavity walls, and a cap disposed on a side of the cavity opposite the cavity bottom. The cavity substrate, the cap, and the one or more cavity walls form a cavity enclosing a volume. A component can be disposed in the cavity and can extend above the substrate surface. The component can be a piezoelectric or a MEMS device. The cap can have a tophat configuration. The cavity structure can be micro-transfer printed from a source wafer to a destination substrate.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: December 5, 2023
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Raja Fazan Gul, António José Marques Trindade
  • Patent number: 11810877
    Abstract: Embodiments herein describe providing a decoupling capacitor on a first wafer (or substrate) that is then bonded to a second wafer to form an integrated decoupling capacitor. Using wafer bonding means that the decoupling capacitor can be added to the second wafer without having to take up space in the second wafer. In one embodiment, after bonding the first and second wafers, one or more vias are formed through the second wafer to establish an electrical connection between the decoupling capacitor and bond pads on a first surface of the second wafer. An electrical IC can then be flip chipped bonded to the first surface. As part of coupling the decoupling capacitor to the electrical IC, the decoupling capacitor is connected between the rails of a power source (e.g., VDD and VSS) that provides power to the electrical IC.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: November 7, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Vipulkumar K. Patel, Mark A. Webster, Craig S. Appel
  • Patent number: 11810842
    Abstract: A leadframe is formed by chemically half-etching a sheet of conductive material. The half-etching exposes a first side surface of a first contact of the leadframe. A solder wettable layer is plated over the first side surface of the first contact. An encapsulant is deposited over the leadframe after plating the solder wettable layer.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 7, 2023
    Assignee: Semtech Corporation
    Inventor: Henry Descalzo Bathan
  • Patent number: 11810828
    Abstract: Methods are presented for forming multi-threshold field effect transistors. The methods generally include depositing and patterning an organic planarizing layer to protect underlying structures formed in a selected one of the nFET region and the pFET region of a semiconductor wafer. In the other one of the nFET region and the pFET region, structures are processed to form an undercut in the organic planarizing layer. The organic planarizing layer is subjected to a reflow process to fill the undercut. The methods are effective to protect a boundary between the nFET region and the pFET region.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: November 7, 2023
    Assignee: International Business Machines Corporation
    Inventors: Jing Guo, Ekmini Anuja De Silva, Indira Seshadri, Jingyun Zhang, Su Chen Fan
  • Patent number: 11810873
    Abstract: A solid-state fuse device includes a switch a gate driver connected to the switch and configured to transition the switch from a closed state to an open state when at least one of an overcurrent measurement exceeds a predetermined overcurrent threshold or a voltage drop across the switch exceeds a predetermined saturation voltage threshold.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: November 7, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chandra S. Namuduri, Muhammad H. Alvi, Rashmi Prasad
  • Patent number: 11805653
    Abstract: A memory can have a stacked memory array that can have a plurality of levels of memory cells. Each respective level of memory cells can be commonly coupled to a respective access line. A plurality of drivers can be above the stacked memory array. Each respective driver can have a monocrystalline semiconductor with a conductive region coupled to a respective access line.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: October 31, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Haitao Liu, Kamal M. Karda, Gurtej S. Sandhu, Sanh D. Tang, Akira Goda, Lifang Xu
  • Patent number: 11804586
    Abstract: High-voltage solid-state transducer (SST) devices and associated systems and methods are disclosed herein. An SST device in accordance with a particular embodiment of the present technology includes a carrier substrate, a first terminal, a second terminal and a plurality of SST dies connected in series between the first and second terminals. The individual SST dies can include a transducer structure having a p-n junction, a first contact and a second contact. The transducer structure forms a boundary between a first region and a second region with the carrier substrate being in the first region. The first and second terminals can be configured to receive an output voltage and each SST die can have a forward junction voltage less than the output voltage.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: October 31, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Martin F. Schubert
  • Patent number: 11791350
    Abstract: A peeling method at low cost with high mass productivity is provided. A resin layer having a thickness greater than or equal to 0.1 ?m and less than or equal to 3 ?m is formed over a formation substrate using a photosensitive and thermosetting material, a transistor including an oxide semiconductor in a channel formation region is formed over the resin layer, the resin layer is irradiated with light using a linear laser device, and the transistor and the formation substrate are separated from each other. A first region and a second region which is thinner than the first region or an opening can be formed in the resin layer. In the case of forming a conductive layer functioning as an external connection terminal or the like to overlap with the second region or the opening of the resin layer, the conductive layer is exposed.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: October 17, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuharu Hosaka, Satoru Idojiri, Kenichi Okazaki, Hiroki Adachi, Daisuke Kubota
  • Patent number: 11784296
    Abstract: A semiconductor device package includes a carrier, a semiconductor device, a lid, a conductive post, a first patterned conductive layer, a conductive element disposed between the first conductive post and the first patterned conductive layer, and an adhesive layer disposed between the lid and the carrier. The conductive post is electrically connected to the first patterned conductive layer. The semiconductor device is electrically connected to the first patterned conductive layer. The lid is disposed on the carrier, and the lid includes a second patterned conductive layer electrically connected to the first conductive post.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: October 10, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Mei-Yi Wu, Lu-Ming Lai, Yu-Ying Lee, Yung-Yi Chang
  • Patent number: 11784051
    Abstract: A method for fabricating a semiconductor device may include: forming a gate dielectric material over a substrate; sequentially forming a carbon-undoped polysilicon layer and a carbon-doped polysilicon layer over the gate dielectric material; doping the carbon-doped polysilicon layer with a dopant; forming a columnar crystalline polysilicon layer over the carbon-doped polysilicon layer doped with the dopant; and performing annealing to activate the dopant.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: October 10, 2023
    Assignee: SK hynix Inc.
    Inventors: Young-Gwang Yoon, Yun-Ik Son, Jee-Hyun Park
  • Patent number: 11776805
    Abstract: Method for selectively oxidizing the dielectric surface of a substrate surface comprising a dielectric surface and a metal surface are discussed. Method for cleaning a substrate surface comprising a dielectric surface and a metal surface are also discussed. The disclosed methods oxidize the dielectric surface and/or clean the substrate surface using a plasma generated from hydrogen gas and oxygen gas. The disclosed method may be performed in a single step without the use of separate competing oxidation and reduction reactions. The disclosed methods may be performed at a constant temperature and/or within a single processing chamber.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: October 3, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Joung Joo Lee, Yi Xu, Yu Lei, Xianmin Tang, Kelvin Chan, Alexander Jansen, Philip A. Kraus
  • Patent number: 11778923
    Abstract: A magnetoresistive memory device includes a memory stack, a spin-orbit-torque (SOT) layer, and a free layer. The memory stack includes a pinned layer, a spacer layer over the pinned layer, a reference layer over the spacer layer, and a tunnel barrier layer over the reference layer. The SOT layer has a top surface substantially coplanar with a top surface of the tunnel barrier layer of the memory stack. The free layer interconnects the SOT layer and the tunnel barrier layer.
    Type: Grant
    Filed: November 14, 2021
    Date of Patent: October 3, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Ya-Jui Tsou, Zong-You Luo, Chee-Wee Liu, Shao-Yu Lin, Liang-Chor Chung, Chih-Lin Wang
  • Patent number: 11778867
    Abstract: A display panel includes a substrate, a first isolation structure, a second isolation structure and a plurality of light emitting structures. The first isolation structure is disposed on the substrate and includes a plurality of through holes. The second isolation substrate is laminated on the first isolation substrate and fills up the plurality of through holes of the first isolation substrate. The plurality of light emitting structures are disposed on the substrate and are isolated from each other via the second isolation structure.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: October 3, 2023
    Assignee: Au Optronics Corporation
    Inventors: Kuo-Jui Chang, Wen-Tai Chen, Chi-Sheng Chiang, Chien-Sen Weng, Ming-Wei Sun
  • Patent number: 11769819
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a metal gate stack over the semiconductor substrate. The semiconductor device structure also includes a spacer element over a sidewall of the metal gate stack. The spacer element is doped with a dopant, and the dopant reduces a dielectric constant of the spacer element. An atomic concentration of the dopant decreases along a direction from an inner surface of the spacer element adjacent to the metal gate stack towards an outer surface of the spacer element.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Patent number: 11764116
    Abstract: A method for detecting a physical short-circuit defect between the first metal layer and a gate below. A first detection structure and a second detection structure are arranged in parallel in a detection region or a dicing channel region on a wafer, each detection structure comprises a P-type active detection, a detection gate structure, a contact hole in the P-type active detection, gate contact holes at two ends of the detection gate structure, a metal wire connected to the contact hole in the P-type active detection, and a metal wire connected to the gate contact hole. The detection gate structure of the first detection structure and the metal wire above it at least partially overlap. However, there is no projective overlap region between the detection gate structure of the second detection structure and the metal wire—above it.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: September 19, 2023
    Assignee: SHANGHAI HUALI INTEGRATED CIRCUIT CORPORATION
    Inventor: Shuhua Lei