Patents Examined by Bernarr E. Gregory
  • Patent number: 11802955
    Abstract: A fin-type planar antenna and a deployable dipole antenna are combined into a probabilistic system as a co-located orthogonal diversity fin antenna to reduce or eliminate cross polarization fades and cancellation dropouts common to wireless audio systems used in theaters, churches and convention centers over coaxial wired connections. Additionally, an optical line may connect the diversity fin antenna to a further circuit. The antenna system features broad bandwidth, resistance to deep nulls or fades caused by cross polarization, resistance to destructive interference, and an air space dielectric covering provides resistance to detuning in the presence of rain, or touching objects.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: October 31, 2023
    Assignee: RF VENUE, INC.
    Inventor: Robert J. Crowley
  • Patent number: 11802961
    Abstract: Techniques and apparatuses are described that implement lateral-bin monitoring for radar target detection. In particular, a radar system, which is mounted to a moving platform, divides a region of interest that is associated with at least one side of the moving platform into multiple lateral bins. The radar system maps locations of detections to the lateral bins, and monitors respective quantities of consecutive frames in which detections occur within the lateral bins. The radar system determines that at least one object is present within one of the lateral bins responsive to a quantity of consecutive frames having detections within the lateral bin being equal to or greater than a threshold. By waiting for a lateral bin to have detections across multiple consecutive frames, the radar system can minimize the false-alarm rate without reducing sensitivity.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: October 31, 2023
    Assignee: Aptiv Technologies Limited
    Inventors: Yu Wang, Yang Wang
  • Patent number: 11802960
    Abstract: The present disclosure relates to a phase correcting apparatus and method of the transmission signal of the vehicle radar apparatus and vehicle radar apparatus with the same. The present embodiments may provide, in the vehicle radar apparatus including the plurality of transmission channels for simultaneously transmitting transmission signals, the phase correcting apparatus and the vehicle radar apparatus for determining the phase adjustment value at the first transmission time based on a source transmission signal applied to the phase shifter included in each transmission channel and a distortion transmission signal extracted from the coupler included in each transmission channel, and compensating the phase of the target detection transmission signal transmitted at a subsequent second transmission time point based on the phase adjustment value. According to the present embodiments, it is possible to improve the quality of the radar reception signal and increase the accuracy of the target information.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: October 31, 2023
    Assignee: HL KLEMOVE CORP.
    Inventor: Kyung Jin You
  • Patent number: 11802975
    Abstract: A navigation satellite system reception apparatus includes a navigation satellite signal reception unit that calculates a first reception position, and a control unit that calculates an initial value of the first reception position and an orbit position of each of four or more navigation satellites, calculates, based on the calculated first reception position, the calculated orbit position, and time information from the first navigation satellite signals, arrival time of each of the first navigation satellite signals, extracts, based on the calculated arrival time, a second navigation satellite signal, calculates, based on the extracted second navigation satellite signal, a second reception position, recursively performs, by using the calculated second reception position, a calculation process of the arrival time and an extraction process of the second navigation satellite signal, and performs, based on a second navigation satellite signal extracted at end of recursive processing, the positioning process or t
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: October 31, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Seiji Yoshida, Masakatsu Fujiwara
  • Patent number: 11796685
    Abstract: An electronic device includes a GPS unit, a GPS information acquisition unit, a sensor information acquisition unit, and a reception condition determination unit. The GPS unit receives a radio wave from at least one of a plurality of positioning satellites. The GPS information acquisition unit acquires ephemeris information by the GPS unit and acquires satellite arrangement information of each of the plurality of positioning satellites acquiring the ephemeris information. The sensor information acquisition unit acquires geographical condition information of a current location at which the electronic device is present. The reception condition determination unit identifies the number of positioning satellites that the receiving unit can capture at the current location among the plurality of positioning satellites acquiring the ephemeris information based on the geographical condition information of the current location and the satellite arrangement information.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: October 24, 2023
    Assignee: CASIO COMPUTER CO., LTD.
    Inventor: Naoto Toda
  • Patent number: 11796687
    Abstract: Techniques are provided for applying plate tectonic model information to improve the accuracy of base station assisted satellite navigation systems. An example method for determining a location of a mobile device includes receiving base station measurement, coordinate and epoch information, receiving base station velocity information, receiving signals from a plurality of satellite vehicles, and determining the location of the mobile device based on the signals received from the plurality of satellite vehicles, the base station measurement, coordinate and epoch information, and the station velocity information.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: October 24, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Min Wang, Ning Luo, Gengsheng Zhang, Yuxiang Peng
  • Patent number: 11789161
    Abstract: The technology disclosed teaches a method of improving accuracy of a GNSS receiver that has a non-directional antenna, with the receiver sending CDN a request for predictive data for an area that includes the receiver. Responsive to the query, the method includes receiving data regarding LOS visibility for the receiver with respect to individual satellites, and the receiver using the data for satellite selection, for choosing some and ignoring other individual satellites. Also disclosed is using the data to exclude from satellite selection at least one individual satellite based on lack of LOS visibility to the individual satellite. Further disclosed is recognizing and rejecting spoofed GNSS signals received by a GNSS receiver that has a non-directional antenna, in response to a CDN response to a request for predictive data for an area that includes the receiver, with the receiver comparing the data with measures of signals received from individual satellites.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: October 17, 2023
    Assignee: Spirent Communications PLC
    Inventors: Jeremy Charles Bennington, Raphael Grech, Dennis Berres, Rafal Zbikowski, Colin Richard Ford, Richard West, Paul Hansen, Arthur Edward Neeves, Esther Anyaegbu, Adam Gleave, Ronald Toh Ming Wong
  • Patent number: 11789178
    Abstract: A ground penetrating radar stencil and system for using the same is provided. The stencils are reusable. The stencils are foldable, allowing for storing and transportation. A first data collection grid stencil is used to mark a grid followed by alternative target marking stencils used to mark utility line and structural support lines. Indelible stencil paint/ink is applied on and through the stencils onto the concrete surfaces to provide for a permanent, standardized and consistent marking of critical embedded infrastructure. The system allows for a uniform collecting and recording of the scanning data results for future reference and work in the same area.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: October 17, 2023
    Assignee: BUTLER SCANNING, INC.
    Inventor: James Butler
  • Patent number: 11789119
    Abstract: An emulation test system and method are provided for time adjusting emulated echo signals in response to a periodic electromagnetic signal.
    Type: Grant
    Filed: May 16, 2021
    Date of Patent: October 17, 2023
    Assignee: KEYSIGHT TECHNOLOGIES, INC.
    Inventors: Lei Li, Lee A. Barford, Jefferson B. Burch, Todd Steven Marshall, Hong-Wei Kong
  • Patent number: 11781868
    Abstract: A system for generating a 3D reflective surface map includes a positioning system, one or more antennas co-located with the positioning system, and a processing system. The positioning system calculates a position estimate. The one or more antennas co-located with the positioning system are configured to receive at least one reflected global navigation satellite system (GNSS) signal associated with a respective GNSS satellite and wherein a pseudo-range to the GNSS satellite is determined based on the reflected GNSS signal. The processing system is configured to receive the position estimate and the pseudo-ranges calculated with respect to each reflected GNSS signal, wherein the processing system maps a reflective surface based on the calculated pseudo-range provided by the reflected GNSS signals, the position estimate, angle-of-arrival of each reflected GNSS signal, and known satellite location of each respective GNSS satellite.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: October 10, 2023
    Assignee: Aptiv Technologies (2) S.à r.l.
    Inventors: Eric P. Knutson, Bradley S. Coon, Linh N. Pham
  • Patent number: 11782167
    Abstract: A system network and methods supported by a constellation of GNSS satellites orbiting around the Earth, and deployed for precise remote monitoring of the spatial displacement, distortion and/or deformation of stationary and/or mobile systems, including buildings, bridges, and roadways. The methods involve (i) embodying multiple GNSS rovers within the boundary of the stationary and/or mobile system being monitored by the GNSS system network, (ii) receiving GNSS signals transmitted from GNSS satellites orbiting the Earth, and (iii) determining the geo-location and time-stamp of each GNSS rover while the stationary and/or mobile system is being monitored for spatial displacement, distortion and/or deformation, using GNSS-based rover data processing methods practiced aboard the system, or remotely within the application and database servers of the data center of the GNSS system network.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: October 10, 2023
    Assignee: 2KR SYSTEMS, LLC
    Inventors: Christopher C. Dundorf, Patrick Melvin
  • Patent number: 11782150
    Abstract: A method and apparatus for processing a constant false alarm rate (CFAR) of sensor data are disclosed. The method includes determining whether a skip condition for an averaging operation on a current frame of radar data is satisfied based on a data variation level of the current frame, skipping the averaging operation on the current frame and obtaining previous mean data of a previous frame of the radar data, in response to the skip condition being satisfied, generating current mean data by performing the averaging operation on the current frame, in response to the skip condition not being satisfied, and performing a CFAR operation on the current frame based on one of the previous mean data or the current mean data.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: October 10, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Min Sung Eo
  • Patent number: 11782128
    Abstract: In a radar apparatus of the present invention, a ghost deciding unit decides whether or not a first condition that a first object candidate and a second object candidate are in the same direction with respect to the transmission/reception unit is satisfied, and then decides whether or not a second condition that, of the first and second object candidates, a reflection power from the first object candidate located farther away from the transmission/reception unit is smaller than a reflection power from the second object candidate located closer to the transmission/reception unit is satisfied. The ghost deciding unit decides that only when the first condition and the second condition are satisfied, the first object candidate is a ghost.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: October 10, 2023
    Assignee: OMRON Corporation
    Inventor: Kazuma Mishima
  • Patent number: 11774581
    Abstract: Radar systems and methods for imaging surfaces. A processor receives raw data from the radar and executes an image data generation. A display unit displays an image representing the targeted surface. The radar unit may be incorporated in a handheld scanner. Rectangular antenna arrays may be configured and processors may be operable such that the image data generated may be processed and displayed in real time.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: October 3, 2023
    Inventors: Tanya Chernyakova, Omer Gal, Assaf Kartowsky, Shay Moshe
  • Patent number: 11774584
    Abstract: An image generating device for a radar includes a receiving module configured to receive a radar signal from an antenna and process the radar signal to generate an echo, an edge image generator configured to generate an edge echo image based on the echo acquired at a first time instance, a projected image generator configured to generate a projected echo image based on the echo acquired at a second time instance, and a superimposition generator configured to superimpose the edge echo image on the projected echo image based on the first and second time instances, to generate a superimposed echo image.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: October 3, 2023
    Assignee: Furuno Electric Co., Ltd.
    Inventor: Masaya Nose
  • Patent number: 11770689
    Abstract: A vehicle-to-vehicle communications system utilizes passive modulation of radar signals to communicate information between vehicles. Passive radar modulators may be provided at the rear of a forward vehicle and used to enrich radar interrogation signals from a rearward vehicle with additional information. Since radar transceivers are already located on a great deal of modern vehicles, this functionality may be easily retrofitted into many vehicles without the addition of a radar transceiver. A number of vehicles in a line of vehicles may pass information back through the line by passive modulation of radar interrogation signals from each vehicle. Accordingly, a vehicle may gain information about vehicles ahead of the one directly in front of it, thereby enabling “see through radar” functionality.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 26, 2023
    Assignee: Qorvo US, Inc.
    Inventor: Richard Perkins
  • Patent number: 11768284
    Abstract: A detection system includes a radar-unit and a controller-circuit. The radar-unit is configured to detect objects proximate a host-vehicle. The controller-circuit is in communication with the radar-unit and is configured to determine a detection-distribution based on the radar-unit. The detection-distribution is characterized by a longitudinal-distribution of zero-range-rate detections associated with a trailer towed by the host-vehicle. The controller-circuit is further configured to determine a trailer-classification based on a comparison of the detection-distribution and longitudinal-distribution-models stored in the controller-circuit. The trailer-classification is indicative of a dimension of the trailer. The controller-circuit determines a trailer-length of the trailer based on the detection-distribution and the trailer-classification.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: September 26, 2023
    Assignee: Aptiv Technologies Limited
    Inventors: Yu Wang, Liang Ma
  • Patent number: 11762103
    Abstract: This detection method is carried out after a phase for acquiring a navigation signal during a convergence phase and comprises at least one of the following steps: —determining a plurality of pilot channel periodic correlations and a plurality of data channel periodic correlations, and determining a first value as a function of these periodic correlations; —determining a plurality of pilot channel partial correlations, and determining a second value as a function of these partial correlations; —determining a plurality of shifted pilot channel correlations, and determining a third value as a function of these shifted pilot channel correlations. The convergence phase further comprises the step for determining a wrong synchronization when at least one of the first value, the second value, and the third value exceeds a predetermined threshold.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: September 19, 2023
    Assignee: THALES
    Inventors: Nicolas Martin, Denis Bouvet, Christian Mehlen
  • Patent number: 11762102
    Abstract: System and method for adjusting timing error in a mobile device. In the mobile device, a crystal oscillator (XO) is used by a system timer as the timing source. When the mobile device enters into a sleep mode, the system timer is set to time the duration of the sleep mode. During the sleep mode, a thermistor is used to measure and monitor the temperature changes of the XO. After the sleep mode is over, a processor in the mobile device determines the frequency changes of the XO based on the temperature changes of the XO. Based on the frequency changes of the XO, the processor determines the timing error that may have occurred when the system timer was timing the sleep mode and determines the actual duration of the sleep mode by adjusting the duration timed by the system timer based on the timing error.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: September 19, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Philip Crary, Troy Li, Scott Scigliano
  • Patent number: 11760291
    Abstract: A centralized occupancy detection system enables monitoring of multiple seats, or more generally, multiple stations, with a single sensor. One illustrative vehicle includes: one or more stations each configured to accommodate an occupant of the vehicle, a radar-reflective surface, and a radar transceiver configured to use the radar-reflective surface to detect an occupant of at least one of the stations. Another illustrative vehicle includes: multiple stations to each accommodate an occupant of the vehicle, and a radar transceiver configured to examine each of the multiple stations to determine whether that station has an occupant.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: September 19, 2023
    Assignee: Ay Dee Kay LLC
    Inventors: Danny Elad, Dan Corcos