Patents Examined by Bernarr E. Gregory
  • Patent number: 11762103
    Abstract: This detection method is carried out after a phase for acquiring a navigation signal during a convergence phase and comprises at least one of the following steps: —determining a plurality of pilot channel periodic correlations and a plurality of data channel periodic correlations, and determining a first value as a function of these periodic correlations; —determining a plurality of pilot channel partial correlations, and determining a second value as a function of these partial correlations; —determining a plurality of shifted pilot channel correlations, and determining a third value as a function of these shifted pilot channel correlations. The convergence phase further comprises the step for determining a wrong synchronization when at least one of the first value, the second value, and the third value exceeds a predetermined threshold.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: September 19, 2023
    Assignee: THALES
    Inventors: Nicolas Martin, Denis Bouvet, Christian Mehlen
  • Patent number: 11763695
    Abstract: A method and system for computer-implemented simulation of radar raw data, where the radar raw data are generated for a synthetic MIMO radar system including a transmitter array of several transmitters for transmitting radar signals and a receiver array of several receivers for receiving radar echoes of the radar signals. In this method, ray tracing of a radar signal sent from a preset transmitting position within the transmitter array and received at a preset receiving position within the receiver array is performed based on a 3D model of a virtual area adjacent to the MIMO radar system, where the ray tracing determines propagations of a plurality of rays within the radar signal from the preset transmitting position to the preset receiving position. The propagation of each ray is dependent on a first angle and a second angle describing the direction of a respective ray at the preset transmitting position.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: September 19, 2023
    Assignee: SIEMENS INDUSTRY SOFTWARE NV
    Inventor: Thijs Van Putten
  • Patent number: 11762102
    Abstract: System and method for adjusting timing error in a mobile device. In the mobile device, a crystal oscillator (XO) is used by a system timer as the timing source. When the mobile device enters into a sleep mode, the system timer is set to time the duration of the sleep mode. During the sleep mode, a thermistor is used to measure and monitor the temperature changes of the XO. After the sleep mode is over, a processor in the mobile device determines the frequency changes of the XO based on the temperature changes of the XO. Based on the frequency changes of the XO, the processor determines the timing error that may have occurred when the system timer was timing the sleep mode and determines the actual duration of the sleep mode by adjusting the duration timed by the system timer based on the timing error.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: September 19, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Philip Crary, Troy Li, Scott Scigliano
  • Patent number: 11762076
    Abstract: The present application at least describes a non-transitory computer readable medium including program instructions that when executed by a processor effectuate a set of actions. The program instructions include causing a scan of a radio frequency spectrum to detect one or more radio signals transmitted within a pre-defined area. The program instructions also include causing a capture of a radio signal of interest from the one or more radio signals. The program instructions also include demodulating the radio signal of interest to determine coded sensor data carried thereon. The program instruction further include decoding the coded sensor data to determine a characteristic of the sensor data. The program instruction further include generating an alert based on the characteristic of the sensor data.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: September 19, 2023
    Assignee: CACI, Inc. - Federal
    Inventors: David Michael Massarik, Nathan D. Flower
  • Patent number: 11747461
    Abstract: A method including detecting an object within a field of view of a radar using a radar signal; tracking movement of the object through the field of view of the radar; triggering a camera to capture a plurality of images of the object based on the movement of the object; detecting the object in the plurality of images; combining data of the radar signal with data of the camera to estimate a position of the object; identifying a radar signal track generated by the motion of the object based on the combined data; and estimating a trajectory of the object based on identifying the radar signal track.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: September 5, 2023
    Assignee: RAPSODO PTE. LTD.
    Inventors: Sayed Zeeshan Asghar, Batuhan Okur
  • Patent number: 11747432
    Abstract: A system for tracking at least one object configured to be transported by at least one vehicle may include at least one computer system. The at least one computer system may be configured to determine at least one location of the at least one vehicle and determine at least one location of the at least one object. The at least one computer system may be further configured to determine at least one location of at least one geofence adjacent the at least one vehicle based on the at least one location of the at least one vehicle. Also, the at least one computer system may be configured to determine whether the at least one object is located within the at least one geofence to determine whether a load of the at least one vehicle includes the at least one object.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: September 5, 2023
    Assignee: FEDEX CORPORATE SERVICS, INC.
    Inventors: Anthony Hyatt, Stephen Witty, Kevin Henry
  • Patent number: 11747113
    Abstract: A flying vehicle is disclosed with a projectile module or component that contains a projectile for projecting at another flying device. The flying vehicle receives an identification of a target flying device and applies a projectile model which generates a determination that indicates whether a projectile, if fired from the projectile component, the projectile will hit the target flying device. The projectile model taking into account one or more of a wind modeling in an area around the flying vehicle based on an inference of wind due to a tilt of the flying vehicle, a projected path of the target device based on its identification and a drag on the projectile as it deploys from the projectile component. When the determination indicates that the projectile will hit the targeted device according to a threshold value, the flying vehicle fires the projectile at the targeted flying device.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: September 5, 2023
    Assignee: FORTEM TECHNOLOGIES, INC.
    Inventors: Eric Christopher Townsend, Matthew Elliott Argyle, Norman Fong
  • Patent number: 11740323
    Abstract: A radar system includes a transmitter, a receiver, and a processor. The transmitter transmits continuous wave radio signals. The receiver receives radio signals that includes the transmitted radio signal reflected from targets in an environment. The targets include a first target and a second target. The first target is closer than a first threshold distance from the vehicle, and the second target is farther than the first threshold distance from the vehicle. A processor is configured to process the received radio signals. The processor is configured to selectively process the received radio signals to detect the second target. The processor selectably adjusts operational parameters of at least one of the transmitter and the receiver to discriminate between the first target and the second target.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: August 29, 2023
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Jean P. Bordes, Monier Maher, Wayne Stark, Raghunath K. Rao
  • Patent number: 11733370
    Abstract: A building radar-camera system includes a camera configured to capture one or images, the one or more images including first locations within the one or more images of one or more points on a world-plane and a radar system configured to capture radar data indicating second locations on the world-plane of the one or more points. The system includes one or more processing circuits configured to receive a correspondence between the first locations and the second locations of the one or more points, generate a sphere-to-plane homography, the sphere-to-plane homography translating between points captured by the camera modeled on a unit-sphere and the world-plane based on the correspondence between the first locations and the second locations, and translate one or more additional points captured by the camera or captured by the radar system between the unit-sphere and the world-plane based on the sphere-to-plane homography.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: August 22, 2023
    Assignee: JOHNSON CONTROLS TYCO IP HOLDINGS LLP
    Inventors: Lior Kirsch, Yohai Falik, Igal Dvir
  • Patent number: 11733393
    Abstract: Embodiments of the present invention provide a method, system and computer program product for bit transition enhanced direct position estimation (DPE) from global navigation satellite system (GNSS) signals and includes the reception in a GNSS receiver of signals from multiple, different satellites in multiple satellite constellations adapted for use with the GNSS. The method estimates the GNSS receiver parameters position, velocity, clock bias, clock drift, and optionally and if unknown, the receiver time. The method generates a model of the received GNSS signals that depends on the receiver parameters. Uniquely, the method includes the synchronization of both a primary code and also a secondary code in the received GNSS signal model, in addition to time delays, Doppler shifts, and other relevant parameters for positioning. Finally, if the secondary code of a particular signal is unknown, the method determines the combination of bit transitions that maximizes the optimization problem.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: August 22, 2023
    Assignee: Albora Technologies Limited
    Inventors: Miquel Ribot, Adrià Gusi, Pau Closas
  • Patent number: 11726198
    Abstract: An illustrative example embodiment of a detector device includes a plurality of transmitters and a controller that controls the transmitters to transmit respective signals defined at least in part by a sequence of 2N pulses within a period. N is an integer greater than 1. A first one of the transmitters transmits 2N first signal pulses within the period. Each of the 2N first signal pulses have a first phase. A second one of the transmitters transmits 2N second signal pulses within the period. Each of the 2N first signal pulses is simultaneous with one of the 2N second signal pulses. N second signal pulses have a phase shift of 180° relative to the first phase. Others of the second signal pulses have the first phase. The N second signal pulses having the phase shift are immediately adjacent each other in the sequence.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: August 15, 2023
    Assignee: Aptiv Technologies Limited
    Inventors: Zhengzheng Li, Kurt J. Oster
  • Patent number: 11728552
    Abstract: The present disclosure provides a phase shifter, an antenna including the phase shifter, and a control method of the phase shifter. The phase shifter includes a first base substrate; a plurality of microstrip lines arranged on the first base substrate and configured to transmit an electromagnetic wave signal and apply a common voltage; a dielectric layer arranged on a side of the plurality of microstrip lines away from the first base substrate; and a plurality of separate voltage control layers correspondingly arranged with the plurality of microstrip lines respectively on a side of the dielectric layer away from the first base substrate. The separate voltage control layers are configured to apply a control voltage. A dielectric constant of the dielectric layer varies with the control voltage applied to the voltage control layers and the common voltage applied to the microstrip lines.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: August 15, 2023
    Assignees: BEIJING BOE TECHNOLOGY DEVELOPMENT CO. , LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Tuo Sun
  • Patent number: 11726480
    Abstract: Aircraft guidance with transmitting beacons is disclosed. An example apparatus includes a transceiver of an aircraft to receive signals from deployed beacons, a signal analyzer to analyze the signals to determine distances of the respective beacons relative to the aircraft, and a position calculator to calculate a positional zone of the aircraft based on the distances.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: August 15, 2023
    Assignee: Insitu, Inc.
    Inventors: Rolf Rysdyk, Torsten Mack, Mohammad Ehsan Nasroullahi
  • Patent number: 11726170
    Abstract: Multi-input downconversion mixers, systems, and methods are provided with input switching in the intermediate frequency or baseband domain. One illustrative mixer embodiment includes: multiple differential pairs of transistors and multiple pairs of switches. Each differential transistor pair has their bases or gates driven by a differential reference signal, their emitters or sources connected to a common node having a current or voltage driven based on a respective one of multiple receive signals, and their collectors or drains providing a product of the differential reference signal with the respective one of the multiple receive signals. Each of the switch pairs selectively couples differential output nodes to the collectors or drains of a respective one of the multiple differential pairs, enabling the differential output nodes to convey an output signal that is a sum of products from selected ones of the multiple differential pairs.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Ay Dee Kay LLC
    Inventor: Benny Sheinman
  • Patent number: 11726169
    Abstract: A system for augmenting 360-degree aspect monostatic radar cross section of an aircraft. The system may comprise a pair of pods mountable on opposing wing tips of an aircraft and each having a pod housing with an elongate body tapering forwardly to a nose and rearwardly to a tail. Each pod may comprise a forward SDL disposed within the nose, a rear SDL disposed within the tail, and a pair of mid-body SDLs disposed within a mid-section of the pod housing. The SDLs may be arranged within the pods to reflect radiation and provide coverage around the aircraft over a region of about 360 azimuth degrees. Each SDL may comprise radar absorbing material located on an interior reflective surface, and portions of the elongate bodies may be constructed of radome material. The SDLs may be Luneburg lens having diameters of at least approximately 8-inches.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: August 15, 2023
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Yogeshkumar M. Patel, Robert Barreto, Christopher F. Calderon, Nathan Andrew Alday, Andrew Hamilton Kay, Paul Nelson, Donald Patrick Hilliard, Dean Lucian Mensa, Leroy Francis Mumma
  • Patent number: 11719788
    Abstract: A signal processing apparatus including a first position calculation unit that calculates a three-dimensional position of a target on a first coordinate system from a stereo image captured by a stereo camera, a second position calculation unit that calculates a three-dimensional position of the target on a second coordinate system from a sensor signal of a sensor capable of obtaining position information of at least one of a lateral direction and a longitudinal direction and position information of a depth direction, a correspondence detection unit that detects a correspondence relationship between the target on the first coordinate system and the target on the second coordinate system, and a positional relationship information estimating unit that estimates positional relationship information of the first coordinate system and the second coordinate system on the basis of the detected correspondence relationship.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: August 8, 2023
    Assignee: Sony Corporation
    Inventors: Takuto Motoyama, Yasuhiro Sutou, Toshio Yamazaki, Hideki Oyaizu, Kenichi Kawasaki
  • Patent number: 11721894
    Abstract: A near-field test system for a phased array antenna includes a probe, a beam forming network, and a computing system. The probe is disposed at a fixed position in a near-field of the phased array antenna and transmits a test beam toward a fixed location on the phased array. The beam forming network is coupled to the phased array and includes a plurality of phase shifters and a beam summer. The phase shifters steer received beams for each antenna element of the phased array to form a planar wave front. The beam summer is coupled to the phase shifters and combines power of the received beams. The computing system is coupled to the beam forming network and scales combined power of the received beams and generates a virtual spectrum for the phased array antenna from scaled power of the received beams.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: August 8, 2023
    Assignee: The Boeing Company
    Inventors: Carl J. Hahn, III, Jeffrey T. McCollam, Paul Christian Werntz
  • Patent number: 11714186
    Abstract: Provided herein is a system and method to determine a heading of a target. The system includes a radar sensor that obtains a snapshot of radar data comprising Doppler velocities and spatial positions of a plurality of detection points of a target, one or more processors, and a memory storing instructions that, when executed by the one or more processors, causes the system to perform conducting a first estimation of a heading of the target based on the spatial positions; conducting a second estimation of the heading of the target based on the Doppler velocities; and obtaining a combined estimation of the heading of the target based on a weighted sum of the first estimation and the second estimation.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: August 1, 2023
    Assignee: INCEPTIO HONGKONG LIMITED
    Inventors: Kan Fu, Ji Jia, Yu Liu
  • Patent number: 11714180
    Abstract: This document describes techniques and systems to enable a radar system to detect angles in bistatic and monostatic scenarios. In some examples, an automotive radar system includes one or more processors. The processors can obtain electromagnetic (EM) energy reflected by objects and generate, based on the reflected EM energy, a two-dimensional (2D) data matrix. The 2D data matrix has a number of rows corresponding to the number of antenna elements in a transmitter array and a number of columns corresponding to the number of antenna elements in a receiver array. Using the 2D data matrix, the processors can determine DoA estimates and DoD estimates in monostatic and bistatic scenarios. By comparing the DoA estimates to the DoD estimates, the processors can determine an angle associated with the objects. In this way, the described techniques and systems can enable angle detection in monostatic and bistatic conditions with improved angular resolution and reduced cost.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: August 1, 2023
    Assignee: Aptiv Technologies Limited
    Inventors: Yu Zhang, Zhengzheng Li, Xin Zhang
  • Patent number: 11715228
    Abstract: Imaging systems, including radio frequency, microwave and millimeter-wave arrangements, and related methods are described. According to one aspect, an imaging system includes an antenna array, a position capture system configured to generate position information indicative of locations of one of the antenna array and the target at the first and second moments in time, and wherein the one of the antenna array and the target move between the first and second moments in time, a transceiver configured to control the antenna array to emit electromagnetic energy towards the target and to generate an output that is indicative of the received electromagnetic energy, a data acquisition system configured to generate radar data, processing circuitry configured to process the position information and the radar data to generate image data regarding the target, and an interface configured to use the image data to generate visual images regarding the target.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: August 1, 2023
    Assignee: Battelle Memorial Institute
    Inventors: David M. Sheen, Richard Trevor Clark