Patents Examined by Bret P Chen
  • Patent number: 11674222
    Abstract: The present disclosure relates to a method for in situ seasoning of process chamber components, such as electrodes. The method includes depositing a silicon oxide film over the process chamber component and converting the silicon oxide film to a silicon-carbon-containing film. The silicon-carbon-containing film forms a protective film over the process chamber components and is resistant to plasma processing and/or dry etch cleaning. The coatings has high density, good emissivity control, and reduces risk of device property drift.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: June 13, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Abdul Aziz Khaja, Ratsamee Limdulpaiboon, Kwangduk Douglas Lee
  • Patent number: 11668004
    Abstract: A method for coating a vaporizing substrate includes depositing a film coating 12 on at least a part of a substrate 10 during the time when the substrate undergoes phase transition from essentially liquid phase to gaseous phase, where the substrate includes a chemical substance that participates in chemical deposition reaction(s) in gaseous phase, the gaseous species 101 formed upon vaporizing at least the portion of the substrate material, when undergoing chemical deposition reactions in gaseous phase, produce particulate 11 that forms at least one coating layer to produce the film coating 12.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: June 6, 2023
    Assignee: PICOSUN OY
    Inventors: Marko Pudas, Niku Oksala
  • Patent number: 11668005
    Abstract: A method for manufacturing a coated item 10 in a chemical deposition reactor and a coated item produced by the method are provided. The method includes deposition of a first coating on a first surface of the item 10, and/or deposition of a second coating on a second surface of the item.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: June 6, 2023
    Assignee: PICOSUN OY
    Inventors: Jani Kivioja, Marko Pudas
  • Patent number: 11666950
    Abstract: A method of forming a process film includes the following operations. A substrate is transferred into a process chamber having an interior surface. A process film is formed over the substrate, and the process film is also formed on the interior surface of the process chamber. The substrate is transferred out of the process chamber. A non-process film is formed on the interior surface of the process chamber. In some embodiments, porosity of the process film is greater than a porosity of the non-process film.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Yi-Ming Lin, Chih-Hung Yeh, Zi-Yuang Wang
  • Patent number: 11670503
    Abstract: Methods for depositing ultrathin films by atomic layer deposition with reduced wafer-to-wafer variation are provided. Methods involve exposing the substrate to soak gases including one or more gases used during a plasma exposure operation of an atomic layer deposition cycle prior to the first atomic layer deposition cycle to heat the substrate to the deposition temperature.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: June 6, 2023
    Assignee: Lam Research Corporation
    Inventors: Jun Qian, Hu Kang, Adrien LaVoie, Seiji Matsuyama, Purushottam Kumar
  • Patent number: 11646198
    Abstract: Methods for depositing films by atomic layer deposition using aminosilanes are provided.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: May 9, 2023
    Assignee: Lam Research Corporation
    Inventors: Jun Qian, Hu Kang, Adrien LaVoie, Seiji Matsuyama, Purushottam Kumar
  • Patent number: 11643726
    Abstract: Methods for depositing materials are described. The methods comprise maintaining a substrate support at a substrate support temperature which is lower than a precursor source temperature. The methods further comprise condensing or depositing a precursor on a substrate, and then curing condensed or deposited precursor to form a layer.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: May 9, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Marko Tuominen, Viljami Pore
  • Patent number: 11643724
    Abstract: Methods of forming structures using a neutral beam, structures formed using a neutral beam, and reactor systems for forming the structures are disclosed. The neutral beam can be used to provide activated species during deposition of a layer and/or to provide activated species to treat a deposited layer.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: May 9, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Tomohiro Kubota, Mitsuya Utsuno, Toshihisa Nozawa, Seiji Samukawa, Hua Hsuan Chen
  • Patent number: 11639545
    Abstract: A method of chemical vapor infiltration and deposition includes disposing a porous substrate within a reaction chamber, establishing a sub-atmospheric pressure within the reaction chamber, introducing a hydrocarbon reaction gas into a reaction zone of the reaction chamber to densify the porous substrate, withdrawing unreacted hydrocarbon reaction gas from the reaction chamber, the unreacted hydrocarbon reaction gas comprising hydrocarbon molecules having six or more carbon atoms, removing at least a portion of the hydrocarbon molecules having six or more carbon molecules from the unreacted hydrocarbon reaction gas by causing the portion of the hydrocarbon molecules having six or more carbon atoms to condense, and recirculating at least a portion of the unreacted hydrocarbon reaction gas back into the reaction zone.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: May 2, 2023
    Assignee: Goodrich Corporation
    Inventor: Tod Policandriotes
  • Patent number: 11639546
    Abstract: A method of forming a single atomic layer nanoribbon on a substrate by subjecting two or more precursor powders to a moisturized gas flow at a temperature sufficient to deposit the single atomic layer nanoribbon on the substrate via chemical vapor deposition, the single atomic layer nanoribbon having a transition metal dichalcogenide material and the substrate including fluorophlogopite mica, highly oriented pyrolytic graphite, or a combination thereof. Also described are single atomic layer nanoribbons prepared by the method.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: May 2, 2023
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Avetik R. Harutyunyan, Xufan Li
  • Patent number: 11634810
    Abstract: Process for manufacturing a nuclear component comprising i) a support containing a substrate based on a metal (1), the substrate (1) being coated or not coated with an interposed layer (3) positioned between the substrate (1) and at least one protective layer (2) and ii) the protective layer (2) composed of a protective material comprising chromium; the process comprising a step a) of vaporizing a mother solution followed by a step b) of depositing the protective layer (2) onto the support via a process of chemical vapor deposition of an organometallic compound by direct liquid injection (DLI-MOCVD).
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 25, 2023
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Frédéric Schuster, Fernando Lomello, Francis Maury, Alexandre Michau, Raphaël Boichot, Michel Pons
  • Patent number: 11631591
    Abstract: Methods for depositing a dielectric material using RF bias pulses along with remote plasma source deposition for manufacturing semiconductor devices, particularly for filling openings with high aspect ratios in semiconductor applications are provided. For example, a method of depositing a dielectric material includes providing a gas mixture into a processing chamber having a substrate disposed therein, forming a remote plasma in a remote plasma source and delivering the remote plasma to an interior processing region defined in the processing chamber, applying a RF bias power to the processing chamber in pulsed mode, and forming a dielectric material in an opening defined in a material layer disposed on the substrate in the presence of the gas mixture and the remote plasma.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: April 18, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhargav S. Citla, Jethro Tannos, Jingyi Li, Douglas A. Buchberger, Jr., Zhong Qiang Hua, Srinivas D. Nemani, Ellie Y. Yieh
  • Patent number: 11624111
    Abstract: A methodology for (a) the etching of films of Al2O3, HfO2, ZrO2, W, Mo, Co, Ru, SiN, or TiN, or (b) the deposition of tungsten onto the surface of a film chosen from Al2O3, HfO2, ZrO2, W, Mo, Co, Ru, Ir, SiN, TiN, TaN, WN, and SiO2, or (c) the selective deposition of tungsten onto metallic substrates, such as W, Mo, Co, Ru, Ir and Cu, but not metal nitrides or dielectric oxide films, which comprises exposing said films to WOCl4 in the presence of a reducing gas under process conditions.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: April 11, 2023
    Assignee: ENTEGRIS, INC.
    Inventors: Robert L. Wright, Jr., Thomas H. Baum, David M. Ermert
  • Patent number: 11618940
    Abstract: A method of manufacturing a display apparatus includes: sequentially fixing a display substrate and a mask assembly to a carrier; transporting the mask assembly and the display substrate to a deposition unit via the carrier; and depositing a deposition material on the display substrate by passing the deposition material through the mask assembly, by using the deposition unit.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: April 4, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kyubum Kim, Sungjin Kim, Chunyoung Park, Uno Chang
  • Patent number: 11618945
    Abstract: In a method of forming a diamond film, substrate, or window, a substrate is provided and the diamond film, substrate, or window is CVD grown on a surface of the substrate. The grown diamond film, substrate, or window has a thickness between 150-999 microns and an aspect ratio?100, wherein the aspect ratio is a ratio of a largest dimension of the diamond film, substrate or window divided by a thickness of the diamond film. The substrate can optionally be removed or separated from the grown diamond film, substrate, or window.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: April 4, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Wen-Qing Xu, Thomas E. Anderson, Giovanni Barbarossa, Elgin E. Eissler, Chao Liu, Charles D. Tanner
  • Patent number: 11618683
    Abstract: A method for synthesizing a diamond by chemical vapor deposition, the method may include heating at least one internal space of at least one hot filament unit; wherein the at least one hot filament unit is positioned in a vacuum chamber; wherein a volume of each internal space out of the at least one internal space is smaller than one half of a volume of the vacuum chamber; feeding at least one gas to the at least one internal space; wherein the at least one gas comprises at least a carbon carrier gas; breaking the at least one gas by the at least one hot filament unit, to provide at least one radical; and depositing the at least one radical on an area of a substrate to provide the diamond.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: April 4, 2023
    Assignee: ICDAT LTD.
    Inventors: Dimitry Boguslavsky, Adam Hoffman
  • Patent number: 11618949
    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 2:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: April 4, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yi Yang, Krishna Nittala, Karthik Janakiraman, Aykut Aydin, Diwakar Kedlaya
  • Patent number: 11613807
    Abstract: A method of depositing a nanoscale-thin film onto a substrate is disclosed. The method generally comprises depositing a layer of a solid or gaseous state functionalizing molecule onto or adjacent to the first surface of the substrate and exposing the first surface to a source of ionizing radiation, thereby functionalizing the first surface of the substrate. Once the layer of functionalizing molecule is removed, a nanoscale-thin film is then deposited onto the functionalized first surface of the substrate.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: March 28, 2023
    Assignee: The Curators of the University of Missouri
    Inventors: Matthew R. Maschmann, Matthias J. Young
  • Patent number: 11613808
    Abstract: Exemplary semiconductor processing methods may include forming a seasoning film on a heater of a processing chamber by a first deposition process. The method may include performing a hardmask deposition process in the processing chamber. The method may include cleaning the processing chamber by a first cleaning process. The method may include monitoring a gas produced during the first cleaning process. The method may include cleaning the processing chamber using a second cleaning process different from the first cleaning process. The method may also include monitoring the gas produced during the second cleaning process.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: March 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jiheng Zhao, Abdul Aziz Khaja, Prashant Kumar Kulshreshtha, Fang Ruan
  • Patent number: 11608557
    Abstract: In some embodiments, methods are provided for simultaneously and selectively depositing a first material on a first surface of a substrate and a second, different material on a second, different surface of the same substrate using the same reaction chemistries. For example, a first material may be selectively deposited on a metal surface while a second material is simultaneously and selectively deposited on an adjacent dielectric surface. The first material and the second material have different material properties, such as different etch rates.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 21, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Michael Eugene Givens, Eva Tois, Suvi Haukka, Daria Nevstrueva, Charles Dezelah