Patents Examined by Bruce Breneman
  • Patent number: 6033589
    Abstract: The present invention discloses a method for depositing a coating layer on an article without edge bead formation by integrating the steps of an edge bead rinsing process with a coating spin-out process such that an edge portion of the wafer can be efficiently cleaned with a cleaning solvent when the coating material is still in its liquid state. While the present invention method can be applied to any coating materials and to any coated substrate, it is particularly suitable for cleaning a spin-on-glass material from a semiconductor wafer such that the wafer edge is not coated with a SOG material and thus particulate contamination caused by cracked SOG from the wafer edge can be avoided.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: March 7, 2000
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Hsiang-Lin Lin
  • Patent number: 6033521
    Abstract: A tilt mechanism for periodically tilting a cassette configured to hold a plurality of wafers or workpieces such that the wafers or workpieces become gravity-loaded against a rear portion of the cassette. The tilt mechanism is mounted entirely above a worktable of a CMP or other processing machine and comprises a housing which houses a circular cam having a spiral groove formed therein. A tilt arm is pivotally mounted to the housing and extends vertically between a lower end which is adjacent the cam and an upper end which is fixed to a platform supporting a cassette holding a plurality of workpieces. A cam follower is attached to the lower end of the arm and projects into the groove. Rotary motion of the cam effects pivotal movement of the tilt arm which, in turn, effects tilting of the support platform and the cassette.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: March 7, 2000
    Assignee: SpeedFam-IPEC Corporation
    Inventors: Robert F. Allen, Ricardo T. Jordan
  • Patent number: 6033480
    Abstract: This invention provides a method and apparatus for substantially eliminating deposition on the edge of a wafer supported on a pedestal in a processing chamber. Process gas flow onto the wafer surface is inhibited from reaching the wafer edge and backside, by means of a shadow ring placed over the wafer without touching it. Deposition on the edge and backside of the wafer are therefore substantially eliminated. The shadow ring defines a cavity which circumscribes the wafer edge, into which purge gas is flowed. This purge gas flows out from the cavity through the gap between the shadow ring and the upper surface of the wafer. Alignment pins are placed on the wafer supporting surface of the pedestal. These pins have sloping surfaces and are arranged to guide the wafer to a centered position on the pedestal when the wafer is placed on the pedestal. These pins also serve to align the shadow ring to the pedestal and thence to the wafer.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: March 7, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Karl A. Littau, Dashun S. Zhou
  • Patent number: 6033522
    Abstract: In a surface treatment apparatus for a rotating disc 10, the outer peripheries of the disc 10 are brought into contact with a pair of positioning rollers 13, 14 to position the disk 10 at the predetermined position. A first treatment roller 17 brought into contact with one of the surfaces of the disc 10 and a second treatment roller 18 brought into contact with the other surface of the disc 10 are arranged at both side of the disk 10, and the rollers 17, 18 are drive to move to come close to and away from each other. When the disk 10 is held between the rollers 17, 18, the frictional force of the rollers relative to the disc 10 is differentiated between an end and the opposite end of each of the rollers, thereby, the rotary motions of the rollers 17, 18 are transformed into a rotary motion of the disc 10 to treat the surfaces of the rotating disc.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: March 7, 2000
    Assignee: System Seiko Co., Ltd.
    Inventors: Tetsuya Iwata, Nobuo Nakazawa
  • Patent number: 6033481
    Abstract: A plasma processing apparatus in which power consumption is reduced, which can generate uniform plasma in a large range and in which minute processing in high etching selectivity and in high aspect ratio is enabled is disclosed. High density plasma is generated in a vacuum vessel housing a processed sample utilizing an electron cyclotron resonance phenomenon caused by an electromagnetic wave in an ultra-high frequency band and a magnetic field and the surface of the processed sample is etched using this plasma. An electromagnetic wave in an ultra-high frequency band for generating plasma is radiated from a planar conductive plate consisting of graphite or silicon which is arranged opposite to the surface of the processed sample into space inside the vacuum vessel. High density plasma in the low degree of dissociation can be generated by using an electromagnetic wave in an ultra-high frequency band and as a result, the controllability of etching reaction can be enhanced.
    Type: Grant
    Filed: January 6, 1999
    Date of Patent: March 7, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Ken'etsu Yokogawa, Tetsuo Ono, Kazunori Tsujimoto, Naoshi Itabashi, Masahito Mori, Shinichi Tachi, Keizo Suzuki
  • Patent number: 6030487
    Abstract: A wafer carrier assembly including a subassembly for in-situ nondestructive pad conditioning, characterized by continuously cleansing the pad surface with an energized fluid. The fluid may be abrasive in nature, such as a slurry, or non-abrasive, such as DeIonized (DI) water. In addition, the fluid may be of a type known to assist in removing slurry and/or residual materials from a pad surface and followed by a DI water rinse. The chemical may be either liquid or gas.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: February 29, 2000
    Assignee: International Business Machines Corporation
    Inventors: Thomas R. Fisher, Jr., Carol E. Gustafson, Michael F. Lofaro
  • Patent number: 6030541
    Abstract: A pattern in a surface is defined by providing on the surface a hard mask material; depositing an anti-reflective coating on the hard mask material; applying a photoresist layer on the anti-reflective coating; patterning the photoresist layer, anti-reflective layer and hard mask material; and removing the remaining portions of the photoresist layer and anti-reflective layer; and then patterning the substrate using the hard mask as the mask. Also provided is a structure for defining a pattern in a surface which comprises a surface having a hard mask material thereon; an anti-reflective coating located on the hard mask material; and a photoresist located on the anti-reflective coating. Also provided is an etchant composition for removing the hard mask material which comprises an aqueous composition of HF and chlorine.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: February 29, 2000
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Michael Caterer, James T. Marsh, Hung Ng, James M. Oberschmidt, Jed H. Rankin
  • Patent number: 6030489
    Abstract: A method and apparatus to improve process control during plasma etching of semiconductor substrates. Improvements are directed towards controlling the rate of etching when using consumable electrodes. Consumable electrode materials are used to increase selectivity in certain plasma etching processes as in via. contact. or in SOG etch. A consumable electrode material has a significant effect on processing time due to changing gap dimension between electrodes. This invention teaches how to adjust for process variables by using feedback from two strategically placed pressure manometers.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: February 29, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Yuan-Ko Hwang
  • Patent number: 6030457
    Abstract: In a vertical substrate processing apparatus including a vertical reaction vessel having an open lower end, a lid closing the open lower end of the reaction vessel, a rotation shaft extending through the lid to rotate a wafer boat in the reaction vessel, a bore formed in a casing disposed below the lid to receive the rotation shaft is sealed hermetically by a magnetic sealing unit, the leakage of a gas emanated from magnetic fluid of the magnetic sealing unit into the reaction vessel is suppressed during a LPCVD process and, if the vertical processing apparatus is used for both a LPCVD process and an oxidation process, the corrosion of the components of a rotating mechanism by HCl gas is prevented. To achieve such functions, the bore is evacuated through an exhaust passage opening in to the bore at a position on the side of the reaction vessel with respect to the magnetic sealing unit. The deposition of reaction byproducts on rotating members can be prevented by supplying an inert gas, such as N.sub.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: February 29, 2000
    Assignee: Tokyo Electron Limited
    Inventors: Tomohisa Shimazu, Kenji Honma, Makoto Nakamura
  • Patent number: 6027663
    Abstract: A method-of low-damage, anisotropic etching of substrates including mounting the substrate upon the anode in a DC plasma reactor and subjecting the substrate to a plasma of low-energy electrons and a species reactive with the substrate. An apparatus for conducting low-damage, anisotropic etching including a DC plasma reactor, a permeable wall hollow cold cathode, an anode, and means for mounting the substrate upon the anode.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: February 22, 2000
    Assignee: Georgia Tech Research Corporation
    Inventors: Kevin P. Martin, Harry P. Gillis, Dmitri A. Choutov
  • Patent number: 6027602
    Abstract: An apparatus for wet processing of substrates in a controlled environment. It is a single-substrate processing apparatus which is capable of carrying out etching, rinsing, and drying processes all in a single apparatus and in a controlled environment. A closed processing chamber is provided for processing a substrate in a closed environment. Processing liquids and gases are introduced into the chamber and the chamber is rotated with the substrate. Temperature inside the chamber is controlled by heating the gases. Humidity is controlled by varying the proportion of water vapor. The rotation of the chamber with the substrate creates a stable environment where processing parameters are more easily controlled.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: February 22, 2000
    Assignee: Techpoint Pacific Singapore Pte. Ltd.
    Inventors: Ching-Chang Alex Hung, Ta-Hsing Fu
  • Patent number: 6028009
    Abstract: A process is disclosed for fabricating a device with a cavity formed at one end thereof. A body is provided with a depression, and mask layer is applied to the surface of the body and the depression, the mask layer having a lower etch rate than the body. Near the depression, an opening is formed in the mask layer. Starting from the opening, the body is subjected to an isotropic etching process to form the cavity below the mask layer, with the mask layer being essentially preserved and forming in the area of the depression a structure extending into the cavity.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: February 22, 2000
    Assignee: Micronas Intermetall GmbH
    Inventors: Guenter Igel, Martin Mall
  • Patent number: 6024045
    Abstract: A method for treating the surface of a semiconductor layer includes the step of removing an oxide from the surface of a semiconductor layer by adding fluorine or fluoride to hydrogen radicals separately from plasma atmosphere and thereafter exposing the semiconductor layer to the mixed gas and hydrogen-terminating the surface.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: February 15, 2000
    Assignee: Fujitsu Limited
    Inventors: Jun Kikuchi, Shuzo Fujimura, Masao Iga
  • Patent number: 6024829
    Abstract: The present invention, in one embodiment, provides a method for eliminating agglomerate particles in a polishing slurry. In this particular embodiment, the method includes transferring a slurry that has a design particle size from a slurry source to an energy source. In many instances, the slurry forms an agglomerate that has an agglomerated particle size, which is substantially larger than the design particle size. This larger particle size is highly undesirable because it can damage the semiconductor wafer surface as it is polished. The method further includes subjecting the agglomerate to energy, such as an ultra sonic wave emanating from the energy source, and transferring energy from the energy source to the slurry to reduce the agglomerated particle size to substantially the design particle size.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: February 15, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: William G. Easter, John A. Maze
  • Patent number: 6025271
    Abstract: A method for removing a surface defect from a dielectric layer during the formation of a semiconductor device comprises the steps of forming a dielectric layer having a hole therein, the dielectric also having a surface defect resulting from a previous manufacturing step such as chemical mechanical polish, contact with another surface during production, or from a manufacturing defect. A blanket conductive layer is then formed within the hole, within the surface defect, and over the dielectric layer. The conductive layer is etched from the surface of the dielectric using an etch which removes the conductive layer at a substantially faster rate than it removes the dielectric. This etch is stopped when the level of conductive material in the plug is flush with the upper surface of the dielectric. Next, the conductive and dielectric layers are etched using a dry or plasma etch which removes the conductive and dielectric layers at about the same rate.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: February 15, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Bradley J. Howard, Mark E. Jost, Guy Blalock
  • Patent number: 6024799
    Abstract: A manifold for use in a chemical vapor deposition reactor, optimized for providing effective deposition on a substrate of a specific diameter. The manifold has upstream and downstream faces and is of substantially circular shape, with a central region of the downstream face being perforated by a plurality of upstream-directed bores. The central region is substantially larger than a circle of the specific wafer diameter for which the reactor is optimized. A centrally located plurality of the bores are through-bores or holes to the upstream face of the manifold that define a gas flow path from an upstream gas source to the wafer.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: February 15, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Chen-An Chen, Karl Anthony Littau
  • Patent number: 6022412
    Abstract: An epitaxial reactor with a flat disc-shaped susceptor comprises a flat, substantially tubular quartz reaction chamber (12) containing a rotatable susceptor disk (14) having a plurality of recesses (16a-h) for housing a corresponding plurality of disc-shaped wafers (18a-h) of material to be processed, a tank (26) filled with flowing coolant liquid (28) surrounding the substantially tubular chamber (12), a primary supply inductor (90) substantially in the form of a flat spiral disposed outside the reaction chamber (12) in the lower portion of the tank (26) parallel to the susceptor disc (14) and having means (118) for modifying the distance between each individual turn of the primary inductor (90) and the susceptor disc, possibly a secondary inductor (102) formed by turns disposed parallel and closely coupled to the turns of the primary inductor (90), possibly means (158) for selectively connecting each turn of the primary inductor (90) to external loads according to a known technique or for selectively closin
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: February 8, 2000
    Assignee: LPE SPA
    Inventors: Ogliari Vincenzo, Preti Franco, Pozzetti Vittorio
  • Patent number: 6022483
    Abstract: A system for controlling the pressure in a chamber with a computer controlled exhaust throttle valve. A characterization relationship describes the static properties of the valve geometry, valve actuation mechanism and gas flow properties. This characterization relationship can comprise a theoretical or empirical function which associates a sufficient number of valve positions with the corresponding pressure, and may be parameterized by other auxiliary variables such as inlet gas flow values, gas types and compositions. An inverse relationship between the current measurable variables of the process, such as pressure, inlet flows and other auxiliary parameters is defined. A linearization method uses the inverse relationship to modify the effect of the valve positioning on the corresponding value of pressure in such a way that the combined behavior of the process and the linearization method yields a linear relationship between a new control variable and the pressure.
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: February 8, 2000
    Assignee: Intergrated Systems, Inc.
    Inventor: Gurcan Aral
  • Patent number: 6022752
    Abstract: A mandrel for forming a nozzle plate having orifices of precise size and location, and method of making the mandrel. The nozzle plate is formed by overcoating a substrate with a metal film. The film is covered with a photoresist material. Portions of the photoresist are exposed to light passing through a photomask having an annular light-transparent regions, of precise diameters and pitch. The photoresist is subjected to a developer bath which dissolves the photoresist exposed to the light, thereby revealing selected portion of the film. Next, an etchant is brought into contact with the film for etching-away the film so as to an annular opening in the film defining a column of precise diameter at the center of each opening. A new photoresist layer is then applied to the film. Portions of the new photoresist layer is exposed to light passing through a second photomask.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: February 8, 2000
    Assignee: Eastman Kodak Company
    Inventors: Jeffrey I. Hirsh, Xin Wen
  • Patent number: 6021737
    Abstract: A plasma beam is directed towards a hearth to flow electric current of the plasma through the hearth during formation of a thin film on a substrate. The plasma beam is directed towards an auxiliary anode to flow electric current of the plasma through the auxiliary anode during the period after completion of the formation of the thin film on the substrate and before beginning of the formation of a thin film on the subsequent substrate.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: February 8, 2000
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventors: Toshiyuki Sakemi, Masaru Tanaka