Patents Examined by Cheung Lee
  • Patent number: 11871556
    Abstract: A memory device includes a substrate, an active layer spaced apart from a surface of the substrate and laterally oriented in a first direction and including an opened first side, a closed second side, and a channel layer between the first side and the second side, and a word line laterally oriented in a second direction crossing the first direction while surrounding the channel layer.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: January 9, 2024
    Assignee: SK hynix Inc.
    Inventors: Il Do Kim, Dong Sun Sheen, Seung Hwan Kim
  • Patent number: 11869955
    Abstract: A method for processing an integrated circuit includes forming I/O gate all around transistors and core gate all around transistors. The method performs a regrowth process on an interfacial dielectric layer of the I/O gate all around transistors by diffusing metal atoms into the interfacial dielectric layer of the I/O gate all around transistor. The regrowth process does not diffuse metal atoms into the interfacial gate dielectric layer of the core gate all around transistor.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: January 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jia-Ni Yu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 11869915
    Abstract: An integrated device, the device including: a first level including a first mono-crystal layer, the first mono-crystal layer including a plurality of single crystal transistors; an overlying oxide disposed on top of the first level; a second level including a second mono-crystal layer, the second level overlaying the oxide, where the second mono-crystal layer includes a plurality of image sensors, where the second level is bonded to the first level, where the bonded includes an oxide to oxide bond; and a plurality of pixel control circuits, where each of the plurality of image sensors is directly connected to at least one of the plurality of pixel control circuits, and where the integrated device includes a plurality of memory circuits.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: January 9, 2024
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist
  • Patent number: 11862585
    Abstract: A semiconductor package structure includes a first substrate, a second substrate, a pad layer and a conductive bonding layer. The first substrate has a first surface and a second surface opposite to the first surface. The second substrate has a first surface and a second surface opposite to the first surface. The second substrate is disposed side-by-side with the first substrate. The pad layer is disposed on the second surface of the first substrate and the second surface of the second substrate. The conductive bonding layer is disposed between the pad layer and the second surfaces of the first substrate and the second substrate.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: January 2, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Syu-Tang Liu, Huang-Hsien Chang, Shu-Han Yang
  • Patent number: 11862709
    Abstract: A first layer is formed over a substrate; a second layer is formed over the first layer; and a third layer is formed over the second layer. The first and third layers each have a first semiconductor element; the second layer has a second semiconductor element different from the first semiconductor element. The second layer has the second semiconductor element at a first concentration in a first region and at a second concentration in a second region of the second layer. A source/drain trench is formed in a region of the stack to expose side surfaces of the layers. A first portion of the second layer is removed from the exposed side surface to form a gap between the first and the third layers. A spacer is formed in the gap. A source/drain feature is formed in the source/drain trench and on a sidewall of the spacer.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Lun Chang, Jiun-Ming Kuo, Ji-Yin Tsai, Yuan-Ching Peng
  • Patent number: 11862702
    Abstract: Gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, and methods of fabricating gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, are described. For example, an integrated circuit structure includes an insulator fin on an insulator substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator fin. A gate stack surrounds a channel region of the vertical arrangement of horizontal semiconductor nanowires, and the gate stack is overlying the insulator fin. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and at first and second ends of the insulator fin.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Cory Weber, Willy Rachmady, Varun Mishra
  • Patent number: 11855175
    Abstract: Semiconductor devices and methods of forming the same are provided. An example method includes providing a workpiece including a first dummy gate stack and a second dummy gate stack in a first area of the workpiece, a third dummy gate stack and a fourth dummy gate stack in a second area of the workpiece, a hard mask layer over each of the first dummy gate stack, the second dummy gate stack, the third dummy gate stack, and the fourth dummy gate stack. The method further includes depositing a photoresist (PR) layer over the workpiece to form a first PR layer portion over the first area and a second PR layer portion over the second area; and selectively forming a first opening through the second PR layer portion over the third dummy gate stack and a second opening through the second PR layer portion over the fourth dummy gate stack.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sung-Hsin Yang, Jung-Chi Jeng, Ru-Shang Hsiao
  • Patent number: 11855022
    Abstract: Semiconductor device packages and method are provided. A semiconductor device package according to the present disclosure includes a substrate including a first region, a passive device disposed over the first region of the substrate, a contact pad disposed over the passive device, a passivation layer disposed over the contact pad, a recess through the passivation layer, and an under-bump metallization (UBM) layer. The recess exposes the contact pad and the UBM layer includes an upper portion disposed over the passivation layer and a lower portion disposed over a sidewall of the recess. A projection of the upper portion of the UBM layer along a direction perpendicular to the substrate falls within an area of the contact pad.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Fan Huang, Hui-Chi Chen, Kuo-Chin Chang, Chien-Huang Yeh, Hong-Seng Shue, Dian-Hau Chen, Yen-Ming Chen
  • Patent number: 11854896
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises first semiconductor stack over a substrate, wherein the first semiconductor stack includes first semiconductor layers separated from each other and stacked up along a direction substantially perpendicular to a top surface of the substrate; second semiconductor stack over the substrate, wherein the second semiconductor stack includes second semiconductor layers separated from each other and stacked up along the direction substantially perpendicular to the top surface of the substrate; inner spacers between edge portions of the first semiconductor layers and between edge portions of the second semiconductor layers; and a bulk source/drain (S/D) feature between the first semiconductor stack and the second semiconductor stack, wherein the bulk S/D feature is separated from the substrate by a first air gap, and the bulk S/D feature is separated from the inner spacers by second air gaps.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Xusheng Wu, Ying-Keung Leung, Huiling Shang
  • Patent number: 11855114
    Abstract: An integrated device, the device including: a first level including a first mono-crystal layer, the first mono-crystal layer including a plurality of single crystal transistors; an overlying oxide disposed on top of the first level; a second level including a second mono-crystal layer, the second level overlaying the oxide, where the second mono-crystal layer includes a plurality of semiconductor devices; a third level overlaying the second level, where the third level includes a plurality of image sensors, where the first level includes a plurality of landing pads, where the second level is bonded to the first level, where the bonded includes an oxide to oxide bond; and an isolation layer disposed between the second mono-crystal layer and the third level.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: December 26, 2023
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist
  • Patent number: 11854900
    Abstract: An embodiment method includes: forming a dielectric-containing substrate over a semiconductor substrate; forming a stack of first semiconductor layers and second semiconductor layers over the dielectric-containing substrate, wherein the first semiconductor layers and the second semiconductor layers have different material compositions and alternate with one another within the stack; patterning the first semiconductor layer and the second semiconductor layers into a fin structure such that the fin structure includes sacrificial layers including the second semiconductor layers and channel layers including the first semiconductor layers; forming source/drain features adjacent to the sacrificial layers and the channel layers; removing the sacrificial layers of the fin structure so that the channel layers of the fin structure are exposed; and forming a gate structure around the exposed channel layers, wherein the dielectric-containing substrate is interposed between the gate structure and the semiconductor substra
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Ka-Hing Fung
  • Patent number: 11854899
    Abstract: A method of fabricating a semiconductor device is described. A plurality of fins is formed over a substrate. Dummy gates are formed patterned over the fins, each dummy gate having a spacer on sidewalls of the patterned dummy gates. Recesses are formed in the fins using the patterned dummy gates as a mask. A passivation layer is formed over the fins and in the recesses in the fins. The passivation layer is patterned to leave a remaining passivation layer only in some of the recesses in the fins. Source and drain regions are epitaxially formed only in the recesses in the fins without the remaining passivation layer.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Shih-Yao Lin, Chao-Cheng Chen, Chih-Han Lin, Chen-Ping Chen, Ming-Ching Chang, Chia-Hao Yu, Hsiao Wen Lee
  • Patent number: 11854917
    Abstract: A radio-frequency device comprises a semiconductor device, comprising a radio-frequency chip, and a first connection element, which is configured to mechanically and electrically connect the semiconductor device to a circuit board. The radio-frequency device furthermore comprises a waveguide component arranged over the semiconductor device, comprising a waveguide embodied in the waveguide component, and a second connection element, which mechanically connects the waveguide component to the semiconductor device. At least one from the first connection element or the second connection element is embodied in an elastic fashion.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: December 26, 2023
    Assignee: Infineon Technologies AG
    Inventors: Ernst Seler, Ulrich Moeller, Bernhard Rieder
  • Patent number: 11854901
    Abstract: A device is manufactured by providing a semiconductor fin protruding from a major surface of a silicon substrate comprising silicon. A liner and a shallow trench isolation (STI) region are formed adjacent the semiconductor fin. A silicon cap is deposited over the semiconductor fin. The resulting cap consists of crystalline silicon in the portion over the semiconductor fin and consists of amorphous silicon in the portions over the liner and STI region. An HCl etch bake process is performed to remove the portions of amorphous silicon over the liner and the STI region.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hsiung Yen, Ta-Chun Ma, Chien-Chang Su, Jung-Jen Chen, Pei-Ren Jeng, Chii-Horng Li, Kei-Wei Chen
  • Patent number: 11854895
    Abstract: A method includes forming a first low-dimensional layer over an isolation layer, forming a first insulator over the first low-dimensional layer, forming a second low-dimensional layer over the first insulator, forming a second insulator over the second low-dimensional layer, and patterning the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator into a protruding fin. Remaining portions of the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator form a first low-dimensional strip, a first insulator strip, a second low-dimensional strip, and a second insulator strip, respectively. A transistor is then formed based on the protruding fin.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Ching Cheng, Tzu-Ang Chao, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li
  • Patent number: 11848241
    Abstract: Methods and associated devices including the fabrication of a semiconductor structure are described that include epitaxially growing a stack of layers alternating between a first composition and a second composition. The stack of layers extends across a first region and a second region of a semiconductor substrate. The stack of layers in the second region of the semiconductor substrate may be etched to form an opening. A passivation process is then performed that includes introducing chlorine to at least one surface of the opening. After performing the passivation process, an epitaxial liner layer is grown in the opening.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Jiu Chou, Yuan-Ching Peng, Jiun-Ming Kuo
  • Patent number: 11842929
    Abstract: A semiconductor device includes a plurality of channel layers vertically separated from one another. The semiconductor device also includes an active gate structure comprising a lower portion and an upper portion. The lower portion wraps around each of the plurality of channel layers. The semiconductor device further includes a gate spacer extending along a sidewall of the upper portion of the active gate structure. The gate spacer has a bottom surface. Moreover, a dummy gate dielectric layer is disposed between the gate spacer and a topmost channel layer of plurality of channel layers. The dummy gate dielectric layer is in contact with a top surface of the topmost channel layer, the bottom surface of the gate spacer, and the sidewall of the gate structure.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: December 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Yu Kao, Shih-Yao Lin, Chen-Ping Chen, Chih-Chung Chiu, Chen-Yui Yang, Ke-Chia Tseng, Hsien-Chung Huang, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Patent number: 11842951
    Abstract: A semiconductor device includes a semiconductor element, a first lead (1), a plurality of second leads and a sealing resin. The first lead includes a mounting portion mounting the semiconductor element, four connecting portions extending from four corners of the mounting portion, respectively, and four first terminal portions connected to front ends of the connecting portions, respectively. A part of each first terminal portion is exposed from the sealing resin. The second leads are arranged in a plural quantity between adjacent first terminal portions when viewed in a thickness direction. Each second lead includes a second terminal portion having a part exposed from the sealing resin, and a joining portion extending from the second terminal portion toward the mounting portion. A connecting portion width dimension of the connecting portion is greater than a joining portion width dimension of the joining portion of the second lead adjacent to the connecting portion.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: December 12, 2023
    Assignee: ROHM CO., LTD.
    Inventor: Ippei Yasutake
  • Patent number: 11837563
    Abstract: A method for manufacturing an electronic device includes: providing a substrate; forming a plurality of connecting pads and a plurality of conductive portions partially overlapped by the plurality of connecting pads on the substrate; forming a plurality of conductive lines on the substrate, wherein one of the plurality of conductive lines is partially overlapped with one of the plurality of conductive portions, and an insulating layer is disposed between one of the plurality of connecting pads and the one of the plurality of conductive portions; and bonding a plurality of light emitting units to the plurality of connecting pads.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: December 5, 2023
    Assignee: InnoLux Corporation
    Inventors: Jia-Yuan Chen, Tsung-Han Tsai
  • Patent number: 11837667
    Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: December 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Min-Kun Dai, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin, Wei-Gang Chiu