Patents Examined by Chuong A Luu
  • Patent number: 11075220
    Abstract: A semiconductor device includes a first stacked body comprising first conductive layers and first insulating layers interposed therebetween, a first columnar portion comprising a first semiconductor layer extending in the first stacked body in the first direction and a first memory layer between the first semiconductor layer and the first conductive layers, a second stacked body comprising second conductive layers and second insulating layers interposed therebetween, and a second columnar portion comprising a second semiconductor layer extending in the second stacked body in the first direction and a second memory layer between the second semiconductor layer and the second conductive layers. The first columnar portion has a first diameter, and the second columnar portion has a second diameter, and each of the plurality of first conductive layers has a first film thickness, and each of the plurality of second conductive layers has a second film thickness.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: July 27, 2021
    Assignee: KIOXIA CORPORATION
    Inventor: Ken Komiya
  • Patent number: 11069652
    Abstract: A method of manufacturing a semiconductor structure is provided. The method includes providing a first substrate including a plurality of conductive bumps disposed over the first substrate; providing a second substrate; disposing a patterned adhesive over the first substrate, wherein at least a portion of the plurality of conductive bumps is exposed through the patterned adhesive; bonding the first substrate with the second substrate; and singulating a chip from the first substrate.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: July 20, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alexander Kalnitsky, Yi-Yang Lei, Hsi-Ching Wang, Cheng-Yu Kuo, Tsung Lung Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu, Chin-Yu Ku, De-Dui Liao, Kuo-Chio Liu, Kai-Di Wu, Kuo-Pin Chang, Sheng-Pin Yang, Isaac Huang
  • Patent number: 11062954
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a fin-shaped structure thereon; forming a single diffusion break (SDB) structure in the substrate to divide the fin-shaped structure into a first portion and a second portion; forming a first gate structure on the SDB structure; forming an interlayer dielectric (ILD) layer around the first gate structure; transforming the first gate structure into a first metal gate; removing the first metal gate to form a first recess; and forming a dielectric layer in the first recess.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: July 13, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Patent number: 11060026
    Abstract: An electroluminescent device includes a first electrode and a second electrode facing each other, and an emissive layer disposed between the first electrode and the second electrode and including the quantum dots. The quantum dots include a semiconductor nanocrystal core including indium (In) and phosphorous (P), a first semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the first semiconductor nanocrystal shell including zinc and selenium, and a second semiconductor nanocrystal shell disposed on the first semiconductor nanocrystal shell, the second semiconductor nanocrystal shell including zinc and sulfur, wherein the quantum dots do not include cadmium. The electroluminescent device has an external quantum efficiency of greater than or equal to about 9% and a maximum brightness of greater than or equal to about 10,000 candelas per square meter (cd/m2).
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: July 13, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yuho Won, Ha Il Kwon, Eun Joo Jang, Jaejun Chang, Dae Young Chung
  • Patent number: 11062938
    Abstract: For simplifying the dual-damascene formation steps of a multilevel Cu interconnect, a formation step of an antireflective film below a photoresist film is omitted. Described specifically, an interlayer insulating film is dry etched with a photoresist film formed thereover as a mask, and interconnect trenches are formed by terminating etching at the surface of a stopper film formed in the interlayer insulating film. The stopper film is made of an SiCN film having a low optical reflectance, thereby causing it to serve as an antireflective film when the photoresist film is exposed.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: July 13, 2021
    Assignee: Renesas Electronics Corporation
    Inventors: Katsuhiko Hotta, Kyoko Sasahara
  • Patent number: 11049859
    Abstract: The present disclosure relates to a bulk complementary-metal-oxide-semiconductor (CMOS) device including a device substrate, a thinned device die with a device region over the device substrate, a first mold compound, and a second mold compound. The device region includes a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion. The first mold compound resides over the device substrate, surrounds the thinned device die, and extends vertically beyond the thinned device die to define an opening over the thinned device die and within the first mold compound. The second mold compound fills the opening and directly connects the thinned device die. Herein, a silicon material with a resistivity between 5 Ohm-cm and 30000 Ohm-cm does not exist between the second mold compound and the thinned device die.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: June 29, 2021
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Michael Carroll, Dirk Robert Walter Leipold, George Maxim, Baker Scott
  • Patent number: 11049858
    Abstract: A method of forming a fin field effect transistor complementary metal oxide semiconductor (CMOS) device is provided. The method includes forming a plurality of multilayer fin templates and vertical fins on a substrate, wherein one multilayer fin template is on each of the plurality of vertical fins. The method further includes forming a dummy gate layer on the substrate, the plurality of vertical fins, and the multilayer fin templates, and removing a portion of the dummy gate layer from the substrate from between adjacent pairs of the vertical fins. The method further includes forming a fill layer between adjacent pairs of the vertical fins. The method further includes removing a portion of the dummy gate layer from between the fill layer and the vertical fins, and forming a sidewall spacer layer on the fill layer and between the fill layer and the vertical fins.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: June 29, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Junli Wang, Michael P. Belyansky
  • Patent number: 11037826
    Abstract: A semiconductor device and method of forming the same is disclosed. The semiconductor device includes a semiconductor substrate, a first fin and a second fin extending from the semiconductor substrate, a first lower semiconductor feature directly over the first fin, and a second lower semiconductor feature directly over the second fin. Each of the first and second lower semiconductor features includes a top surface bending downward towards the semiconductor substrate. The semiconductor also further includes an upper semiconductor feature directly over and in physical contact with the first and second lower semiconductor features. The semiconductor device further includes a dielectric layer on sidewalls of the first and second lower semiconductor features.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: June 15, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Jeng-Wei Yu, Li-Wei Chou, Tsz-Mei Kwok, Ming-Hua Yu
  • Patent number: 11037827
    Abstract: A method includes forming a plurality of fins on a substrate and a dummy gate structure over the fins. A spacer layer is formed over the dummy gate structure and the fins. The spacer layer is recessed to form asymmetrically recessed spacers along sidewalls of each of the fins, thereby exposing a portion of each of the fins. A source/drain epitaxy is grown on the exposed portions of the plurality of fins, a first source/drain epitaxy on a first fin being asymmetrical to a second source/drain epitaxy on a second fin. A device includes a first and second fin on a substrate with a gate structure formed over the first and second fins. An epitaxy if formed over the first fin and the second fin on the same side of the gate structure, where the height of the first epitaxy is greater than the height of the second epitaxy.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Yu-Lien Huang
  • Patent number: 11038050
    Abstract: A wide band gap semiconductor device includes a semiconductor layer, a trench formed in the semiconductor layer, first, second, and third regions having particular conductivity types and defining sides of the trench, and a first electrode embedded inside an insulating film in the trench. The second region integrally includes a first portion arranged closer to a first surface of the semiconductor layer than to a bottom surface of the trench, and a second portion projecting from the first portion toward a second surface of the semiconductor layer to a depth below a bottom surface of the trench. The second portion of the second region defines a boundary surface with the third region, the boundary region being at an incline with respect to the first surface of the semiconductor layer.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: June 15, 2021
    Assignee: ROHM CO., LTD.
    Inventor: Kengo Omori
  • Patent number: 11031427
    Abstract: A solid-state imaging device includes a plurality of photoelectric conversion portions each provided to correspond to each of a plurality of pixels in a semiconductor substrate and receiving incident light through a light sensing surface, and a pixel separation portion that is embedded into a trench provided on a side portion of the photoelectric conversion portion and electrically separates the plurality of pixels in a side of an incident surface of the semiconductor substrate into which the incident light enters. The pixel separation portion is formed by an insulation material which absorbs the incident light entering the light sensing surface.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: June 8, 2021
    Assignee: SONY CORPORATION
    Inventor: Yuki Miyanami
  • Patent number: 11031570
    Abstract: An organic electroluminescence element includes an anode, an organic light emitting layer disposed on an upper side of the anode, a functional layer which is disposed over the organic light emitting layer, in which a rare earth metal and other material are present mixedly, and in which part of the rare earth metal is oxidized, and a cathode disposed on an upper side of the functional layer. A method of manufacturing an organic electroluminescence element includes forming an anode, forming an organic light emitting layer on an upper side of the anode, forming over the organic light emitting layer a functional layer in which a rare earth metal and other material are present mixedly and part of the rare earth metal is oxidized, and forming a cathode on an upper side of the functional layer.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: June 8, 2021
    Assignee: JOLED INC.
    Inventor: Kosuke Mishima
  • Patent number: 11024553
    Abstract: A method includes forming a transistor over a substrate; forming a conductive structure over the substrate, such that a first end of the conductive structure is electrically coupled to a gate of the transistor, and a second end of the conductive structure is electrically coupled to the substrate; applying biases to the gate of the transistor and source/drain structures of the transistor; determining whether the first end and the second end of the conductive structure are electrically connected; generating, based on the determination, a first result indicating that the first end and the second end of the conductive structure are electrically connected; and qualifiying the conductive structure as an antenna in response to the first result.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: June 1, 2021
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Tsang-Po Yang, Jui-Hsiu Jao, Chun-Shun Huang
  • Patent number: 11024711
    Abstract: A technique relates to a semiconductor device. A rare earth material is formed on a substrate. An isolation layer is formed at an interface of the rare earth material and the substrate. Channel layers are formed over the isolation layer. Source or drain (S/D) regions are formed on the isolation layer.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Zhenxing Bi, Kangguo Cheng, Zheng Xu
  • Patent number: 11018296
    Abstract: An exemplary semiconductor incorporates phase change material MoxW1-xTe2 that may be the semiconducting channel or may be part of a control terminal/gate of the semiconductor. The phase change material selectably being in one of metal and insulator phases depending on whether a voltage field greater than a predetermined phase change field is present at the phase change material. The properties of the semiconductor are varied depending on the phase of the phase change material.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: May 25, 2021
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Vincent Gambin, Rachel A. Koltun, Benjamin Heying
  • Patent number: 11011697
    Abstract: A magnetic tunnel junction (MTJ) structure having faceted sidewalls is formed on a conductive landing pad that is present on a surface of an electrically conductive structure embedded in a dielectric material layer. No metal ions are re-sputtered onto the sidewalls of the MTJ structure during the patterning of the MTJ material stack that provides the MTJ structure. The absence of re-sputtered metal on the MTJ structure sidewalls reduces the risk of shorts.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: May 18, 2021
    Assignee: International Business Machines Corporation
    Inventors: Oscar van der Straten, Alexander Reznicek, Praneet Adusumilli
  • Patent number: 11011447
    Abstract: A semiconductor package is provided. The semiconductor package includes a package substrate. The semiconductor package further includes a first chip and a second chip mounted on the package substrate. The thickness of the first chip is different from that of the second chip. In addition, the semiconductor package includes a heat spreader attached on top of the first chip and top of the second chip. A first portion of the heat spreader over the first chip and a second portion of the heat spreader over the second chip have the same thickness.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Hua Wang, Po-Yao Lin, Feng-Cheng Hsu, Shin-Puu Jeng, Wen-Yi Lin, Shu-Shen Yeh
  • Patent number: 11011607
    Abstract: The likelihood of formation of a corner resulting from a recess in a part of an n-type semiconductor layer is reduced at a deeper position than a p-type semiconductor layer. A method of manufacturing a semiconductor device comprises: forming a gallium nitride (GaN) based n-type semiconductor layer containing n-type impurities; forming a groove by forming a first mask on a part of a surface of the n-type semiconductor layer and then etching a part uncovered by the first mask; removing the first mask; forming a gallium nitride (GaN) based p-type semiconductor layer containing p-type impurities on the surface of the n-type semiconductor layer including the groove; etching the p-type semiconductor layer so as to expose the n-type semiconductor layer at least in a range differing from a range in the presence of the groove; and forming a metal electrode contacting the exposed n-type semiconductor layer and the p-type semiconductor layer.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 18, 2021
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Kota Yasunishi, Toru Oka, Kazuya Hasegawa
  • Patent number: 11011631
    Abstract: A silicon carbide substrate has at least one of a first structure and a second structure. The first structure is such that a first impurity region is in contact with a second impurity region, a third impurity region is separated from a fourth impurity region by a second drift region, and the second impurity region has a width greater than a width of the fourth impurity region in a direction parallel to a first main surface. The second structure is such that the first impurity region is separated from the second impurity region by a first drift region, the third impurity region is in contact with the fourth impurity region, and the fourth impurity region has a width greater than a width of the second impurity region in the direction parallel to the first main surface.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: May 18, 2021
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Hiyoshi, Kosuke Uchida
  • Patent number: 11011466
    Abstract: Various semiconductor chip devices and methods of making the same are disclosed. In one aspect, an apparatus is provided that includes a first redistribution layer (RDL) structure having a first plurality of conductor traces, a first molding layer on the first RDL structure, plural conductive pillars in the first molding layer, each of the conductive pillars including a first end and a second end, a second RDL structure on the first molding layer, the second RDL structure having a second plurality of conductor traces, and wherein some of the conductive pillars are electrically connected between some of the first plurality of conductor traces and some of the second plurality of conductor traces to provide a first inductor coil.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: May 18, 2021
    Assignee: ADVANCED MICRO DEVICES, INC.
    Inventors: Milind S. Bhagavat, Rahul Agarwal, Chia-Hao Cheng