Patents Examined by Colleen J O Toole
  • Patent number: 11171638
    Abstract: An electronic apparatus is provided which includes switching elements, resonance suppression resistors which have first ends connected to control terminals of the switching elements and second ends having a common connection, an on-drive circuit which has an on-drive resistor and is connected to a drive power circuit, and which is supplied with voltage from the drive power circuit and applies electric charge to the control terminals of the switching elements via the on-drive resistor to turn on the switching elements, and an off-drive circuit which has an off-drive resistor and releases electric charge from the control terminals of the switching elements via the off-drive resistor to turn off the switching elements. A resistance of the off-drive resistor is set to be smaller than a resistance of the resonance suppression resistors. The off-drive circuit releases electric charge from the control terminals of the switching elements not via the resonance suppression resistors.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: November 9, 2021
    Assignee: DENSO CORPORATION
    Inventors: Sho Yamada, Yosuke Watanabe, Junichi Fukuta, Tsuneo Maebara
  • Patent number: 11152931
    Abstract: The trend in wireless communication receivers is to capture more and more bandwidth to support higher throughput, and to directly sample the radio frequency (RF) signal to enable re-configurability and lower cost. Other applications like instrumentation also demand the ability to digitize wide bandwidth RF signals. These applications benefit from input circuitry which can perform well with high speed, wide bandwidth RF signals. An input buffer and bootstrapped switch are designed to service such applications, and can be implemented in 28 nm complementary metal-oxide (CMOS) technology.
    Type: Grant
    Filed: July 26, 2020
    Date of Patent: October 19, 2021
    Assignee: Analog Devices, Inc.
    Inventor: Lawrence A. Singer
  • Patent number: 11146278
    Abstract: The invention concerns a frequency locked loop comprising: a digitally controlled oscillator (102) configured to generate a frequency signal (F); a frequency counter (310) configured to generate an estimate (f_EST) of the frequency of the frequency signal based on a reference clock signal (CLK_REF); and a controller (314) configured to generate a digital control signal (C_FREQ) for controlling the digitally controlled oscillator based on the estimated frequency, wherein the controller is clocked by a further clock signal (CLK) having a variable frequency, and the controller is configured to generate a trigger signal (AUTO_CLEAR) for triggering a counting phase of the frequency counter.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: October 12, 2021
    Assignee: Commissariat à l'Energie Atomique et aux Energies Alternatives
    Inventor: Ivan Miro Panades
  • Patent number: 11128296
    Abstract: The present disclosure provides a method and a device for simulation of a CMOS radio frequency switch and a communication terminal. The method includes: receiving a first value; obtaining a current value of a first function based on the first value, when the CMOS radio frequency switch is in an on-state, the value of the first function is a first function value, and when the CMOS radio frequency switch is in an off-state, the value of the first function is a second function value; receiving a second value; receiving a third value; outputting an off-state capacitance value of the CMOS radio frequency switch based on the second value and the third value; and outputting an on-state resistance value of the CMOS radio frequency switch based on the second value, the third value and the current value of the first function.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: September 21, 2021
    Assignee: Shanghai Huahong Grace Semiconductor Manufacturing Corporation
    Inventor: Xiangquan Fan
  • Patent number: 11121704
    Abstract: In described examples, a first power switching circuit receives a power switching control signal and activates a first power switch in response to the power switching control signal. A second power switching circuit receives the power switching control, activates a second power switch in response to the power switching control signal, and determines a first power switching delay in response to temperature indications of the first and second power switches. The second power switching circuit activates the second power switch at a first delayed time after the activation of the first power switch, where the first delayed time follows the activation of the first power switch by the determined first power switching delay.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 14, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Cetin Kaya, Serkan Dusmez
  • Patent number: 11099593
    Abstract: An integrated circuit includes a base current cancellation circuit and a complementary to absolute temperature (CTAT) circuit. The base current cancellation circuit includes a first bipolar junction transistor (BJT) and a current mirror coupled to the first BJT. The current mirror is configured to provide a mirrored current to a base electrode of the first BJT. The CTAT circuit is coupled to receive a voltage signal corresponding to a reference current of the current mirror. The CTAT circuit includes a second BJT coupled to form a base current based on the voltage signal.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: August 24, 2021
    Assignee: NXP USA, INC.
    Inventors: Anil Kumar Gottapu, Sanjay Kumar Wadhwa, Ravi Dixit
  • Patent number: 11095222
    Abstract: A high efficiency converter is provided. The converter can be used in applications requiring fast transient response under a first loading condition, and high efficiency under a second loading condition. The converter converts one or more input voltages via two or more conversion paths. Each of the two or more conversion paths corresponds to a different loading condition which indicates a magnitude of a load driven by the converter (e.g., heavy or light), and a target transient response of the load (e.g., fast or slow). A conversion path for a heavy or fast loading condition converts an input voltage directly to a target output voltage. A conversion path for a light or slow loading condition includes a two-stage architecture.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: August 17, 2021
    Assignee: MediaTek Inc.
    Inventors: Chih-Chen Li, Yen-Hsun Hsu, Tzu-Chi Huang
  • Patent number: 11088688
    Abstract: The present disclosure describes a composite device including first field effect transistor (FET) device and second FET device. First FET device includes first drain, first source, first gate and shielding terminal. First FET device is made of wide-bandgap semiconductor material. Second FET device includes second drain, second source, and second gate. First and second FET devices are electrically connected in cascode configuration for providing a capacitive path between drain and gate terminals of composite device such that current flowing through gate terminal controls slew rate of drain voltage appearing at drain terminal. Cascode configuration includes an electrical connection of first drain to drain terminal, an electrical connection of first source to second drain, an electrical connection of second gate to first gate and gate terminal, an electrical connection of shielding terminal to second source, and an electrical connection of second source to source terminal of composite device.
    Type: Grant
    Filed: November 23, 2019
    Date of Patent: August 10, 2021
    Assignee: LOGISIC DEVICES, INC.
    Inventor: Vipindas Pala
  • Patent number: 11088609
    Abstract: A switching power supply can include multiple power MOSFETs that receive an initial gate drive waveform comprising a fast slew rate region having a negative slope and a slow slew rate region also having a negative slope. The MOSFETs can turn off during the slow slew rate region of the initial gate drive waveform.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 10, 2021
    Assignee: Keithley Instruments, LLC
    Inventor: Wayne C. Goeke
  • Patent number: 11070127
    Abstract: A semiconductor device that compensates for imbalance between a plurality of semiconductor elements connected in parallel by negative feedback to achieve current balance utilizing reversed temperature characteristics without providing any dedicated element just for cancelling temperature characteristics. A gate driving circuit turns ON a power semiconductor element by applying a voltage elevated by a charge pump (CP) circuit to a gate through a resistor connected between the CP circuit and the gate. The power semiconductor element is turned OFF by control circuit that gives a control signal to turn ON a MOS switch in the gate driving circuit and discharges the gate through a diode.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: July 20, 2021
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Morio Iwamizu
  • Patent number: 11004475
    Abstract: Methods and apparatuses are provided for aligning read data in a stacked semiconductor device. An example apparatus includes a stacked semiconductor device comprising stacked first and second die. The stacked semiconductor device includes a first path having a first align (first die) and second align (second die) circuits for providing read data from the second die and a second path having a first replica align (first die) and second replica align (second die) circuits. During a timing align operation, a first control circuit sets the first align and replica align circuits to a first delay value based on a propagation delay of a clock signal through the second replica align circuit. After setting of the first delay value, a second control circuit sets the second align and replica align circuits to a second delay value based on a difference in propagation delays through the first and second replica align circuits.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: May 11, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Seiji Narui
  • Patent number: 11005484
    Abstract: A phase locked loop circuit includes a voltage controlled oscillator configured to output a clock signal having a predetermined frequency based in a control voltage, a phase frequency detector configured to compare the clock signal with a reference signal to output a first control signal and a second control signal, a charge pump configured to output the control voltage based on the first control signal and the second control signal, a voltage supply including an output terminal connected to an output terminal of the charge pump by a transmission switch, and a leakage remover circuit connected to the transmission switch and configured to remove a leakage current flowing through the transmission switch while the transmission switch is turned-off.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: May 11, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Gyu Sik Kim, Woo Seok Kim, Tae Ik Kim, Hwan Seok Yeo
  • Patent number: 10979048
    Abstract: Circuits and methods for switching between an internal clock and an external clock without causing an interruption or an artifact in the switched clock signal are disclosed. To achieve this, the internal clock signal is synchronized with the external clock signal prior to switching. The synchronization may be accomplished using two possible clock-synchronization methods: a first method that passively waits for the clocks to synchronize over time and a second that adjusts a period of the internal clock signal to actively synchronize the clocks. The method selected for use requires the fewest clock cycles to reach synchronization, which is determined by a frequency difference between the two clock frequencies. After clock-synchronization, the output clock signal spectrum will be substantially the same before and after switching between the clock signals, and therefore is suitable for use with spread spectrum clocks.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: April 13, 2021
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Jonathan Matalon
  • Patent number: 10972085
    Abstract: A phase interpolator is provided. The phase interpolator includes a plurality of first interpolation cells each configured to supply a first current to a common node of the phase interpolator. Further, the phase interpolator includes a plurality of second interpolation cells each configured to supply a second current to the common node. The second current is lower than the first current, wherein a sum of the plurality of second currents supplied to the common node by the plurality of second interpolation cells is substantially equal to the first current.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: April 6, 2021
    Assignee: Intel IP Corporation
    Inventors: Sebastian Sievert, Sarit Zur, Ofir Degani, Rotem Banin
  • Patent number: 10972096
    Abstract: An electronic switch that includes a signal path with a first terminal side of the signal path including cascoded transistors in the signal path. When the switch is in an off state, the gate of one of the cascoded transistors is biased at an intermediate voltage different from the voltage applied to the gate of the other of the cascoded transistors. In one embodiment, having the gate of one of the cascoded transistors biased at an intermediate voltage in an off state may reduce leakage current into a signal terminal of the switch. The electronic switch includes an injection shunting device (e.g. such as a transistor) connected to a node of the signal path. In one embodiment, the injection shunting device prevents the voltage of the node from reaching a specific voltage level due to leakage current when the switch is in an off state.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 6, 2021
    Assignee: NXP USA, INC.
    Inventors: Robert Matthew Mertens, James Robert Feddeler, Michael A. Stockinger
  • Patent number: 10972082
    Abstract: A multi-stream cross correlator for spiking neural networks, where each stream contains significant stochastic content. At least one event occurs, with a fixed temporal relationship across at least two streams. Each stream is treated as a Frame Of Reference (FOR), and subject to an adjustable delay based on comparison to the Other streams. For each spike of the FOR, a timing analysis, relative to the last and current FOR spikes, is completed by comparing Post and Pre accumulators. Also, a new timing analysis is begun, with the current FOR spike, by restarting the production of Post and Pre weighting functions, the values of which are accumulated, upon the occurrence of each Other spike, until a next FOR spike. A one-spike delay unit can be used, if time-neutral conflict resolution is used. The average spike rate of the FOR can be determined and used for the Post and Pre weighting functions.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 6, 2021
    Assignee: NPARBOR, INC.
    Inventor: David Carl Barton
  • Patent number: 10965294
    Abstract: In described examples, a storage cell ring includes circularly coupled storage cells. Each storage cell includes a respective capacitor for generating a respective integrated voltage responsive to a respective duration a respective storage cell is selected, a respective thresholding converter for generating a respective thresholded signal for indicating whether the respective integrated voltage has crossed a threshold, and respective selection circuitry configured to generate a respective select signal responsive to select signals generated by a respective adjacent storage cells. The ring is coupled to an analog quantifier for generating a conversion value responsive to the generated respective integrated voltage and a respective select signal. The ring is coupled to a loop counter for generating a loop count value responsive to changes of values of at least some of the respective thresholded signals. The conversion value and the loop count value can comprise a time measurement.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: March 30, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Narayanan Seetharaman, Patrick Matthias Georg Forster
  • Patent number: 10965277
    Abstract: Inter-integrated circuit input circuitry includes a pull-up current circuit and an input circuit. The input circuit includes an output inverter, an input inverter, and a pull-up circuit. The pull-up circuit is coupled to an input of the input inverter, and includes a pull-up transistor and a cascode transistor. The pull-up transistor is coupled to the input of the input inverter. The cascode transistor is coupled to the pull-up current circuit and the pull-up transistor, and configured to isolate the pull-up transistor from capacitance of a conductor coupled to the pull-up current circuit and the input circuit.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 30, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Mark Allan Shill
  • Patent number: 10944362
    Abstract: A superconducting device that mixes surface acoustic waves and techniques for fabricating the same are provided. A superconducting device can comprise a first surface acoustic wave resonator comprising a first low-loss piezo-electric dielectric substrate. The superconducting device can also comprise a second surface acoustic wave resonator comprising a second low-loss piezo-electric dielectric substrate. Further, the superconducting device can comprise a Josephson ring modulator coupled to the first surface acoustic wave resonator and the second surface acoustic wave resonator. The Josephson ring modulator is a dispersive nonlinear three-wave mixing element.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: March 9, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Baleegh Abdo
  • Patent number: 10931122
    Abstract: A pre-charge circuit is provided for pre-charging the input node of a capacitive component to which the multiplexer output is fed to a charge level that is close to or approximates the signal output level of the multiplexer when its output is next switched. In order to reduce the level shifting burden on the amplifier in the pre-charge circuit, each pre-charge circuit input channel has a respective capacitor that is able to be switched in and out of series with the respective multiplexer channels, such that the respective capacitors track the signal levels on the multiplexer channels. The provision of the corresponding capacitors for each MUX channel reduces the input current to the pre-charge amplifier, and allows for the level shifting burden to be taken by the capacitors, leading to more stable and lower power operation.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: February 23, 2021
    Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY
    Inventors: Christopher Peter Hurrell, Sanjay Rajasekhar