Patents Examined by Earl N. Taylor
  • Patent number: 12230731
    Abstract: Provided is a solar cell and a photovoltaic module. The solar cell includes a silicon substrate, and the silicon substrate includes a front surface and a back surface arranged opposite to each other. P-type conductive regions and N-type conductive regions are alternately arranged on the back surface of the silicon substrate. Front surface field regions are located on the front surface of the silicon substrate and spaced from each other. The front surface field regions each corresponds to one of the P-type conductive regions or one of the N-type conductive regions. At least one front passivation layer is located on the front surface of the silicon substrate. At least one back passivation layer is located on surfaces of the P-type conductive regions and N-type conductive regions.
    Type: Grant
    Filed: November 8, 2023
    Date of Patent: February 18, 2025
    Assignees: Jinko Solar (Haining) Co., Ltd., Zhejiang Jinko Solar Co., Ltd.
    Inventors: Menglei Xu, Jie Yang, Xinyu Zhang, Hao Jin
  • Patent number: 12230713
    Abstract: A transistor is provided. The transistor includes a first source/drain epitaxial feature, a second source/drain epitaxial feature, and two or more semiconductor layers disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature. The two or more semiconductor layers comprise different materials. The transistor further includes a gate electrode layer surrounding at least a portion of the two or more semiconductor layers, wherein the transistor has two or more threshold voltages.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: February 18, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Wei Chen, Chi-Sheng Lai, Shih-Hao Lin, Jian-Hao Chen, Kuo-Feng Yu
  • Patent number: 12224362
    Abstract: Embodiments of the present disclosure provide for methods of making substrates having an (AR) antireflective layer, substrates having an antireflective layer, devices including a substrate having an antireflective layer, and the like. The AR layer can have a total specular reflection of less than 10% at a wavelength of about 400-800 nm, and a height of about 500-1000 nm.
    Type: Grant
    Filed: May 30, 2023
    Date of Patent: February 11, 2025
    Assignee: University of Florida Research Foundation, INC.
    Inventors: Peng Jiang, Zhuxiao Gu, Ruwen Tan
  • Patent number: 12207470
    Abstract: According to one embodiment, a source layer includes a semiconductor layer including an impurity. A stacked body includes a plurality of electrode layers stacked with an insulator interposed. A gate layer is provided between the source layer and the stacked body. The gate layer is thicker than a thickness of one layer of the electrode layers. A semiconductor body extends in a stacking direction of the stacked body through the stacked body and the gate layer. The semiconductor body further extends in the semiconductor layer where a side wall portion of the semiconductor body contacts the semiconductor layer. The semiconductor body does not contact the electrode layers and the gate layer.
    Type: Grant
    Filed: January 10, 2024
    Date of Patent: January 21, 2025
    Assignee: Kioxia Corporation
    Inventor: Shinya Arai
  • Patent number: 12199211
    Abstract: A process for fabricating a detecting device includes producing a getter pad based on amorphous carbon resting on a mineral sacrificial layer that covers a thermal detector and producing a thin encapsulating layer that rests on the mineral sacrificial layer and that covers an upper face and sidewalls of the getter pad. The mineral sacrificial layer is removed via a first chemical etch, and a protective segment of the getter pad is removed via a second chemical etch.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: January 14, 2025
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Geoffroy Dumont, Laurent Carle, Jean-Jacques Yon
  • Patent number: 12191207
    Abstract: Non-planar I/O and logic semiconductor devices having different workfunctions on common substrates and methods of fabricating non-planar I/O and logic semiconductor devices having different workfunctions on common substrates are described. For example, a semiconductor structure includes a first semiconductor device disposed above a substrate. The first semiconductor device has a conductivity type and includes a gate electrode having a first workfunction. The semiconductor structure also includes a second semiconductor device disposed above the substrate. The second semiconductor device has the conductivity type and includes a gate electrode having a second, different, workfunction.
    Type: Grant
    Filed: October 11, 2023
    Date of Patent: January 7, 2025
    Assignee: Intel Corporation
    Inventors: Roman W. Olac-Vaw, Walid M. Hafez, Chia-Hong Jan, Pei-Chi Liu
  • Patent number: 12176446
    Abstract: The present disclosure provides a solar cell. The solar cell includes a substrate, where the substrate has a front surface and a rear surface, the rear surface includes a textured region and a flat region, a doped surface field is formed in the textured region of the substrate; a tunneling dielectric layer, where the tunneling dielectric layer is located on the flat region; a doped conductive layer, where the doped conductive layer is located on the tunnelling dielectric layer, the doped conductive layer has doping elements, and the doped conductive layer has the same type of the doping elements with the doped surface field; a rear electrode, where a part of a bottom portion of the rear electrode is located in the doped conductive layer and the part of the bottom portion of the rear electrode is in contact with the doped surface field.
    Type: Grant
    Filed: October 24, 2023
    Date of Patent: December 24, 2024
    Assignees: ZHEJIANG JINKO SOLAR CO., LTD., JINKO SOLAR CO., LTD.
    Inventors: Jingsheng Jin, Bike Zhang, Xinyu Zhang
  • Patent number: 12170334
    Abstract: A semiconductor structure includes a stack of semiconductor layers disposed over a substrate, a metal gate structure disposed over and interleaved with the stack of semiconductor layers, the metal gate structure including a gate electrode disposed over a gate dielectric layer, a first isolation structure disposed adjacent to a first sidewall of the stack of semiconductor layers, where the gate dielectric layer fills space between the first isolation structure and the first sidewall of the stack of semiconductor layers, and a second isolation structure disposed adjacent to a second sidewall of the stack of semiconductor layers, where the gate electrode fills the space between the second isolation structure and the second sidewall of the stack of semiconductor layers.
    Type: Grant
    Filed: August 9, 2023
    Date of Patent: December 17, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shi Ning Ju, Kuo-Cheng Chiang, Guan-Lin Chen, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 12163992
    Abstract: To achieve decreased noise and improved sensitivity by reducing parasitic capacitance in a charge detection sensor. The charge detection sensor includes a detection element, a detection electrode, and a contact. The detection element is provided on one surface of a semiconductor substrate and detects a charge. The detection electrode is provided on another surface different from the one surface of the semiconductor substrate. The contact penetrates the semiconductor substrate and electrically connects the detection electrode and the detection element. Since no wiring layer is formed between the detection element and the detection electrode, the parasitic capacitance is reduced.
    Type: Grant
    Filed: August 11, 2023
    Date of Patent: December 10, 2024
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Jun Ogi, Yuri Kato, Naohiko Kimizuka, Yoshihisa Matoba, Kan Shimizu
  • Patent number: 12154996
    Abstract: The present disclosure provides a photo sensing device and a method for forming a photo sensing device. The photo sensing device includes a substrate, a photosensitive member, a superlattice layer and a diffusion barrier structure. The substrate includes a silicon layer at a front surface. The photosensitive member extends into and at least partially surrounded by the silicon layer, wherein an upper portion of the photosensitive member protruding from the silicon layer has a top surface and a facet tapering toward the top surface. The superlattice layer is disposed between the photosensitive member and the silicon layer. The diffusion barrier structure is disposed at a first side of the photosensitive member and a bottom of the diffusion barrier structure is at a level below a top surface of the silicon layer, wherein at least a portion of the diffusion barrier structure is laterally surrounded by the silicon layer.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: November 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chan-Hong Chern, Weiwei Song, Chih-Chang Lin, Lan-Chou Cho, Min-Hsiang Hsu
  • Patent number: 12154994
    Abstract: The present disclosure provides a photo sensing device and a method of forming the same. The photo sensing device includes a substrate comprising a silicon layer at a front surface of the substrate; a photosensitive member extending into and at least partially surrounded by the silicon layer, and a composite layer disposed between the photosensitive member and the silicon layer and surrounding the photosensitive member. The silicon layer includes a first doped region adjacent to a first side of the photosensitive member and a second doped region adjacent to a second side of the photosensitive member opposite to the first side. The first doped region has a first conductivity type and includes a heavily doped region and a lightly doped region adjacent to the heavily doped region. The second doped region has a second conductivity type different from the first conductivity type.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: November 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventor: Chan-Hong Chern
  • Patent number: 12148853
    Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed on and/or in a silicon substrate. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer is on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair of doped regions in the germanium layer is configured as an e-lens of the germanium-based sensor.
    Type: Grant
    Filed: November 29, 2023
    Date of Patent: November 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
  • Patent number: 12132000
    Abstract: An interconnection structure, along with methods of forming such, are described. The structure includes a dielectric layer, a first conductive feature disposed in the dielectric layer, a second conductive feature disposed over the first conductive feature, a third conductive feature disposed adjacent the second conductive feature, a first dielectric material disposed between the second and third conductive features, a first one or more graphene layers disposed between the second conductive feature and the first dielectric material, and a second one or more graphene layers disposed between the third conductive feature and the first dielectric material.
    Type: Grant
    Filed: August 28, 2021
    Date of Patent: October 29, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shao-Kuan Lee, Cheng-Chin Lee, Cherng-Shiaw Tsai, Kuang-Wei Yang, Hsin-Yen Huang, Hsiaokang Chang, Shau-Lin Shue
  • Patent number: 12107173
    Abstract: A SiC Schottky rectifier with surge current ruggedness is described. The Schottky rectifier includes one or more multi-layer bodies that provide multiple types of surge current protection.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: October 1, 2024
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Andrei Konstantinov
  • Patent number: 12107169
    Abstract: A semiconductor device according to the present disclosure includes a stack of first channel members, a stack of second channel members disposed directly over the stack of first channel members, a bottom source/drain feature in contact with the stack of the first channel members, a separation layer disposed over the bottom source/drain feature, a top source/drain feature in contact with the stack of second channel members and disposed over the separation layer, and a frontside contact that extends through the top source/drain feature and the separation layer to be electrically coupled to the bottom source/drain feature.
    Type: Grant
    Filed: July 10, 2023
    Date of Patent: October 1, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Zhi-Chang Lin, Shih-Cheng Chen, Jung-Hung Chang, Chien Ning Yao, Kuo-Cheng Chiang, Chih-Hao Wang
  • Patent number: 12094997
    Abstract: A method includes forming image sensors in a semiconductor substrate. A first alignment mark is formed close to a front side of the semiconductor substrate. The method further includes performing a backside polishing process to thin the semiconductor substrate, forming a second alignment mark on the backside of the semiconductor substrate, and forming a feature on the backside of the semiconductor substrate. The feature is formed using the second alignment mark for alignment.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: September 17, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih Wei Sung, Chung-Bin Tseng, Keng-Ying Liao, Yen-Jou Wu, Po-Zen Chen, Su-Yu Yeh, Ching-Chung Su
  • Patent number: 12094951
    Abstract: A semiconductor device and methods of fabricating the same are disclosed. The method can include forming a fin structure on a substrate, forming a source/drain (S/D) region on the fin structure, forming a gate structure on the fin structure adjacent to the S/D region, and forming a capping structure on the gate structure. The forming the capping structure includes forming a conductive cap on the gate structure, forming a cap liner on the conductive cap, and forming a carbon-based cap on the cap liner. The method further includes forming a first contact structure on the S/D region, forming an insulating cap on the first contact structure, and forming a second contact structure on the conductive cap.
    Type: Grant
    Filed: April 19, 2023
    Date of Patent: September 17, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chin Chang, Ming-Huan Tsai, Li-Te Lin, Pinyen Lin
  • Patent number: 12089403
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a construction comprising a stack that have vertically-alternating insulative tiers and wordline tiers. An array of openings is formed in an uppermost portion of upper material that is above the stack, and the openings comprise channel openings and dummy openings. At least the uppermost portion of the upper material is used as a mask while etching the channel openings and the dummy openings into a lower portion of the upper material. The channel openings are etched into the insulative and wordline tiers. The channel openings are etched deeper into the construction than the dummy openings, and channel material is formed in the channel openings after the etching. Structures independent of method are disclosed.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 10, 2024
    Inventors: M. Jared Barclay, Merri L. Carlson, Saurabh Keshav, George Matamis, Young Joon Moon, Kunal R. Parekh, Paolo Tessariol, Vinayak Shamanna
  • Patent number: 12082431
    Abstract: A display device includes a pixel; and a first color conversion region, a second color conversion region, and a third color conversion region respectively overlapping a first color pixel, a second color pixel, and a third color pixel and spaced from each other. The third color conversion region is aligned with a region between the first color conversion region and the second color conversion region in a first direction, and the first color conversion region and the second color conversion region are aligned with each other in a second direction crossing the first direction. Part of the first color conversion region is disposed in a second pixel area that is adjacent to the first pixel area in the second direction, and part of the second color conversion region is positioned in a third pixel area that is adjacent to the first pixel area in the second direction.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: September 3, 2024
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jea Heon Ahn, Jang Soo Kim, Jeong Ki Kim, Jae Cheol Park
  • Patent number: 12074240
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. A trench structure separates the P-type doped region from the N-type doped region. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. The trench structure may include a textured surface for increased solar radiation collection. Among other advantages, the resulting structure increases efficiency by providing isolation between adjacent P-type and N-type doped regions, thereby preventing recombination in a space charge region where the doped regions would have touched.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: August 27, 2024
    Assignee: MAXEON SOLAR PTE. LTD.
    Inventor: David D. Smith