Patents Examined by Earl N. Taylor
  • Patent number: 11754610
    Abstract: To achieve decreased noise and improved sensitivity by reducing parasitic capacitance in a charge detection sensor. The charge detection sensor includes a detection element, a detection electrode, and a contact. The detection element is provided on one surface of a semiconductor substrate and detects a charge. The detection electrode is provided on another surface different from the one surface of the semiconductor substrate. The contact penetrates the semiconductor substrate and electrically connects the detection electrode and the detection element. Since no wiring layer is formed between the detection element and the detection electrode, the parasitic capacitance is reduced.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 12, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Jun Ogi, Yuri Kato, Naohiko Kimizuka, Yoshihisa Matoba, Kan Shimizu
  • Patent number: 11757060
    Abstract: Short-wave infrared (SWIR) focal plane arrays (FPAs) comprising a Si layer through which light detectable by the FPA reaches photodiodes of the FPA, at least one germanium (Ge) layer including a plurality of distinct photosensitive areas including at least one photosensitive area in each of a plurality of photosensitive photosites, each of the distinct photosensitive areas comprising a plurality of proximate steep structures of Ge having height of at least 0.5 ?m and a height-to-width ratio of at least 2, and methods for forming same.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: September 12, 2023
    Assignee: TriEye Ltd.
    Inventor: Uriel Levy
  • Patent number: 11749719
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, a semiconductor structure includes a first plurality of channel members over a backside dielectric layer, a second plurality of channel members over the backside dielectric layer, a first gate structure over and wrapping around each of the first plurality of channel members, a second gate structure over and wrapping around each of the second plurality of channel members, and a through-substrate contact that extends between the first plurality of channel members and the second plurality of channel members, between the first gate structure and the second gate structure, and through the backside dielectric layer.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ruei-Ping Lin, Kai-Di Tzeng, Chen-Ming Lee, Wei-Yang Lee
  • Patent number: 11728444
    Abstract: An arrangement for an optoelectronic component includes a substrate and an optical semiconductor chip arranged on the substrate. The optical semiconductor chip has an optically active region, a first optically non-active region, and a second optically non-active region. A connection structure connects a chip-side electrical connection to the optically active region. An electrical connection connects the chip-side electrical connection to a second substrate-side electrical connection. A coating is provided in a layer stack in the optically active region, in the first optically non-active region, and in the second optically non-active region. The layer stack includes a first layer and a second layer arranged above the first layer. The chip-side electrical connection and the connection structure in the first optically non-active region and the protective layer in the second optically non-active region are each arranged between the first layer and the second layer.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: August 15, 2023
    Assignee: First Sensor AG
    Inventors: Martin Wilke, Sabine Friedrich, Stephan Dobritz
  • Patent number: 11721783
    Abstract: Provided is a solar cell and a method for manufacturing the same, the method includes: forming a doped layer on a surface of a semiconductor substrate, the doped layer having a first doping concentration of a doping element in the doped layer; depositing, on a surface of the doped layer, a doped amorphous silicon layer including the doping element; selectively removing at least one region of the doped amorphous silicon layer; performing annealing treatment, for the semiconductor substrate to form a lightly doped region having the first doping concentration and a heavily doped region having a second doping concentration in the doped layer, the second doping concentration is greater than the first doping concentration; and forming a solar cell by post-processing the annealed semiconductor substrate. The solar cell and the method for manufacturing the same simplify the manufacturing process and improve conversion efficiency of the solar cell.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: August 8, 2023
    Assignee: Shangrao Jinko solar Technology Development Co., LTD
    Inventors: Jie Yang, Zhao Wang, Peiting Zheng, Xinyu Zhang, Hao Jin
  • Patent number: 11721780
    Abstract: Structures for an avalanche photodetector and methods of forming a structure for an avalanche photodetector. The structure includes a first semiconductor layer having a first portion and a second portion, and a second semiconductor layer stacked in a vertical direction with the first semiconductor layer. The first portion of the first semiconductor layer defines a multiplication region of the avalanche photodetector, and the second semiconductor layer defines an absorption region of the avalanche photodetector. The structure further includes a charge sheet in the second portion of the first semiconductor layer. The charge sheet has a thickness that varies with position in a horizontal plane, and the charge sheet is positioned in the vertical direction between the second semiconductor layer and the first portion of the first semiconductor layer.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: August 8, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Asif Chowdhury, Yusheng Bian
  • Patent number: 11715803
    Abstract: The present disclosure provides semiconductor devices and methods of forming the same. A semiconductor device of the present disclosure includes a first source/drain feature and a second source/drain feature over a substrate, a plurality of channel members extending between the first source/drain feature and the second source/drain feature, a gate structure wrapping around each of the plurality of channel members, and at least one blocking feature. At least one of the plurality of channel members is isolated from the first source/drain feature and the second source/drain feature by the at least one blocking feature.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Lun Min, Chang-Miao Liu
  • Patent number: 11715804
    Abstract: A SiC Schottky rectifier with surge current ruggedness is described. The Schottky rectifier includes one or more multi-layer bodies that provide multiple types of surge current protection.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: August 1, 2023
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Andrei Konstantinov
  • Patent number: 11705527
    Abstract: Embodiments of the present disclosure provide for methods of making substrates having an (AR) antireflective layer, substrates having an antireflective layer, devices including a substrate having an antireflective layer, and the like. The AR layer can have a total specular reflection of less than 10% at a wavelength of about 400-800 nm, and a height of about 500-1000 nm.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 18, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Peng Jiang, Zhuxiao Gu, Ruwen Tan
  • Patent number: 11705528
    Abstract: A semiconductor light-receiving element includes a substrate; a light-receiving mesa portion, formed on top of the substrate, including a first semiconductor layer of a first conductivity type, an absorption layer, and a second semiconductor layer of a second conductivity type; a light-receiving portion electrode, formed above the light-receiving mesa portion, connected to the first semiconductor layer; a pad electrode formed on top of the substrate; and a bridge electrode, placed so that an insulating gap is interposed between the bridge electrode and the second semiconductor layer, configured to connect the light-receiving portion electrode and the pad electrode on top of the substrate, the bridge electrode being formed in a layer separate from layers of the light-receiving portion electrode and the pad electrode.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: July 18, 2023
    Assignee: Lumentum Japan, Inc.
    Inventors: Ryu Washino, Hiroshi Hamada, Takafumi Taniguchi
  • Patent number: 11705521
    Abstract: Semiconductor devices are provided. A semiconductor device includes a fin structure having a plurality of first semiconductor patterns and a plurality of second semiconductor patterns alternately stacked on a substrate, and extending in a first direction. The semiconductor device includes a semiconductor cap layer on an upper surface of the fin structure, and extending along opposite side surfaces of the fin structure in a second direction crossing the first direction. The semiconductor device includes a gate electrode on the semiconductor cap layer, and extending in the second direction. The semiconductor device includes a gate insulating film between the semiconductor cap layer and the gate electrode. Moreover, the semiconductor device includes a source/drain region connected to the fin structure. The plurality of first semiconductor patterns include silicon germanium (SiGe) having a germanium (Ge) content in a range of 25% to 35%, and the plurality of second semiconductor patterns include silicon (Si).
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: July 18, 2023
    Inventors: Sanghoon Lee, Krishna Bhuwalka, Myunggil Kang, Kyoungmin Choi
  • Patent number: 11699758
    Abstract: A first FinFET device includes first fin structures that extend in a first direction in a top view. A second FinFET device includes second fin structures that extend in the first direction in the top view. The first FinFET device and the second FinFET device are different types of FinFET devices. A plurality of gate structures extend in a second direction in the top view. The second direction is different from the first direction. Each of the gate structures partially wraps around the first fin structures and the second fin structures. A dielectric structure is disposed between the first FinFET device and the second FinFET device. The dielectric structure cuts each of the gate structures into a first segment for the first FinFET device and a second segment for the second FinFET device. The dielectric structure is located closer to the first FinFET device than to the second FinFET device.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: July 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Yun Chang, Ming-Ching Chang, Shu-Yuan Ku
  • Patent number: 11699760
    Abstract: A semiconductor device according to the present disclosure includes a stack of first channel members, a stack of second channel members disposed directly over the stack of first channel members, a bottom source/drain feature in contact with the stack of the first channel members, a separation layer disposed over the bottom source/drain feature, a top source/drain feature in contact with the stack of second channel members and disposed over the separation layer, and a frontside contact that extends through the top source/drain feature and the separation layer to be electrically coupled to the bottom source/drain feature.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: July 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Zhi-Chang Lin, Shih-Cheng Chen, Jung-Hung Chang, Chien Ning Yao, Kuo-Cheng Chiang, Chih-Hao Wang
  • Patent number: 11699747
    Abstract: Disclosed herein are quantum dot devices with multiple layers of gate metal, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; an insulating material above the quantum well stack, wherein the insulating material includes a trench; and a gate on the insulating material and extending into the trench, wherein the gate includes a first gate metal in the trench and a second gate metal above the first gate metal.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: July 11, 2023
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Sarah Atanasov, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts, Stephanie A. Bojarski
  • Patent number: 11688824
    Abstract: A method of manufacturing an optoelectronic integrated device can include: providing a semiconductor substrate including at least one optoelectronic device in the semiconductor substrate; forming a first dielectric layer on a first surface of the semiconductor substrate; forming a multilayer insulating layer on the first dielectric layer; forming a first opening in the multilayer insulating layer to expose the first dielectric layer above the optoelectronic device area; and forming a second dielectric layer on the dielectric layer, where the first dielectric layer and the second dielectric layer are anti-reflection layers.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: June 27, 2023
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Zheng Lv, Huisen He, Xianguo Huang
  • Patent number: 11670686
    Abstract: A method for forming III-N structures of desired nanoscale dimensions is disclosed. The method is based on, first, providing a material to serve as a shell inside which a cavity can be formed, followed by using epitaxial growth to fill the cavity with III-N semiconductor(s). Filling a cavity of specified shape and dimensions with a III-N semiconductor results in formation of a III-N structure which has shape and dimensions defined by those of the cavity in the shell, advantageously enabling formation of III-N structures on a nanometer scale without having to rely on etching of III-N materials. Ensuring that at least a part of the III-N material in the cavity is formed by lateral epitaxial overgrowth allows obtaining high quality III-N semiconductor in that part without having to grow a thick layer. Disclosed III-N nanostructures can serve as foundation for fabricating III-N device components, e.g. III-N transistors, having non-planar architecture.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 11664328
    Abstract: An integrated circuit package shield comprising a frame comprising two or more segments, the segments to interlock with one another along a substrate and the segments comprising electrically conductive material to electrically couple to the substrate; and a lid to cover the frame, the lid comprising a conductive material to electrically couple to the substrate.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventor: Rizwan Fazil
  • Patent number: 11658065
    Abstract: A method for CMP includes following operations. A metal layer is received. A CMP slurry composition is provided in a CMP apparatus. The CMP slurry composition includes at least a first oxidizer and a second oxidizer different from each other. The first oxidizer is oxidized to form a peroxidant by the second oxidizer. A portion of the metal layer is oxidized to form a first metal oxide by the peroxidant. The first metal oxide is re-oxidized to form a second metal oxide by the second oxidizer.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: May 23, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ji Cui, Fu-Ming Huang, Ting-Kui Chang, Tang-Kuei Chang, Chun-Chieh Lin, Wei-Wei Liang, Chi-Hsiang Shen, Ting-Hsun Chang, Li-Chieh Wu, Hung Yen, Chi-Jen Liu, Liang-Guang Chen, Kei-Wei Chen
  • Patent number: 11652171
    Abstract: A semiconductor device comprises a first gate electrode on a substrate, a first conductive contact on the first gate electrode, an etch stop layer (ESL) on the first conductive contact, and a second conductive contact extending through the ESL. The first conductive contact has a first width. The second conductive contact has a second width, the second width being smaller than the first width. The ESL overhangs a portion of the second conductive contact. A convex bottom surface of the second conductive contact physically contacts a concave top surface of the first conductive contact.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Huei-Shan Wu, Yi-Lii Huang
  • Patent number: 11652152
    Abstract: A semiconductor device and methods of fabricating the same are disclosed. The method can include forming a fin structure on a substrate, forming a source/drain (S/D) region on the fin structure, forming a gate structure on the fin structure adjacent to the S/D region, and forming a capping structure on the gate structure. The forming the capping structure includes forming a conductive cap on the gate structure, forming a cap liner on the conductive cap, and forming a carbon-based cap on the cap liner. The method further includes forming a first contact structure on the S/D region, forming an insulating cap on the first contact structure, and forming a second contact structure on the conductive cap.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chin Chang, Ming-Huan Tsai, Li-Te Lin, Pinyen Lin