Patents Examined by Earl N. Taylor
  • Patent number: 11895888
    Abstract: A display panel and a display apparatus, the display panel including a first display area, a second display area, and a transition display area between the first display area and the second display area, the light transmittance of the second display area being greater than that of the first display area and the transition display area, the display panel including: first pixels in the first display area; seconds pixels in the second display area; third pixels in the transition display area; second pixel circuits in the transition display area and used for driving the second pixels to display; and third pixel circuits in the transition display area and used for driving the third pixels to display, a third pixel unit of the display panel including a third pixel circuit and two or more third pixels of the same colour electrically connected thereto.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: February 6, 2024
    Assignee: KunShan Go-Visionox Opto-Electronics Co., Ltd
    Inventors: Ji Xu, Miao Chang, Xiujian Zhu, Lu Zhang
  • Patent number: 11869991
    Abstract: A semiconductor device is provided. The semiconductor device includes a waveguide over a first dielectric layer. A first portion of the waveguide has a first width and a second portion of the waveguide has a second width larger than the first width. The semiconductor device includes a first doped semiconductor structure and a second doped semiconductor structure. The second portion of the waveguide is between the first doped semiconductor structure and the second doped semiconductor structure.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: January 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chih-Tsung Shih, Hau-Yan Lu, Felix Tsui, Stefan Rusu, Chewn-Pu Jou
  • Patent number: 11862741
    Abstract: The present disclosure provides a solar cell. The solar cell includes a substrate, where the substrate has a front surface and a rear surface, the rear surface includes a textured region and a flat region, a doped surface field is formed in the textured region of the substrate; a tunneling dielectric layer, where the tunneling dielectric layer is located on the flat region; a doped conductive layer, where the doped conductive layer is located on the tunnelling dielectric layer, the doped conductive layer has doping elements, and the doped conductive layer has the same type of the doping elements with the doped surface field; a rear electrode, where a part of a bottom surface of the rear electrode is located in the doped conductive layer and the part of the bottom surface of the rear electrode is in contact with the doped surface field.
    Type: Grant
    Filed: February 15, 2023
    Date of Patent: January 2, 2024
    Assignees: ZHEJIANG JINKO SOLAR CO., LTD., JINKO SOLAR CO., LTD.
    Inventors: Jingsheng Jin, Bike Zhang, Xinyu Zhang
  • Patent number: 11855048
    Abstract: Semiconductor packages with pass-through clock traces and associated devices, systems, and methods are disclosed herein. In one embodiment, a semiconductor device includes a package substrate including a first surface having a plurality of substrate contacts, a first semiconductor die having a lower surface attached to the first surface of the package substrate, and a second semiconductor die stacked on top of the first semiconductor die. The first semiconductor die includes an upper surface including a first conductive contact, and the second semiconductor die includes a second conductive contact. A first electrical connector electrically couples a first one of the plurality of substrate contacts to the first and second conductive contacts, and a second electrical connector electrically couples a second one of the plurality of substrate contacts to the first and second conductive contacts.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: December 26, 2023
    Inventors: Thomas H. Kinsley, George E. Pax
  • Patent number: 11854905
    Abstract: Among other things, one or semiconductor arrangements, and techniques for forming such semiconductor arrangements are provided. For example, one or more silicon and silicon germanium stacks are utilized to form PMOS transistors comprising germanium nanostructure channels and NMOS transistors comprising silicon nanostructure channels. In an example, a first silicon and silicon germanium stack is oxidized to transform silicon to silicon oxide regions, which are removed to form germanium nanostructure channels for PMOS transistors. In another example, silicon and germanium layers within a second silicon and silicon germanium stack are removed to form silicon nanostructure channels for NMOS transistors. PMOS transistors having germanium nanostructure channels and NMOS transistors having silicon nanostructure channels are formed as part of a single fabrication process.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jin-Aun Ng, Kuo-Cheng Chiang, Carlos H. Diaz, Jean-Pierre Colinge
  • Patent number: 11855237
    Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed on and/or in a silicon substrate. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer is on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair of doped regions in the germanium layer is configured as an e-lens of the germanium-based sensor.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
  • Patent number: 11837645
    Abstract: A semiconductor device including a substrate; a fin active region on the substrate and extending in a first direction; a gate structure extending across the fin active region and extending in a second direction; a source/drain region in the fin active region on a side of the gate structure; an insulating structure covering the gate structure and the source/drain region; and contact structures penetrating through the insulating structure and respectively connected to the source/drain region and the gate structure, wherein one of the contact structures includes a seed layer on the gate structure or the source/drain regions and including lower and upper regions, the lower region having a first grain size and the upper region being amorphous or having a grain size different from the first grain size, and a contact plug on an upper region of the seed layer and having a second grain size.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: December 5, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yoontae Hwang, Wandon Kim, Geunwoo Kim, Heonbok Lee, Taegon Kim, Hanki Lee
  • Patent number: 11837680
    Abstract: The present disclosure relates to methods and apparatus for structuring a semiconductor substrate. In one embodiment, a method of substrate structuring includes applying a resist layer to a substrate optionally disposed on a carrier. The resist layer is patterned using ultraviolet radiation or laser ablation. The patterned portions of the resist layer are then transferred onto the substrate by micro-blasting to form desired features in the substrate while unexposed or un-ablated portions of the resist layer shield the rest of the substrate. The substrate is then exposed to an etch process and a de-bonding process to remove the resist layer and release the carrier.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: December 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Han-Wen Chen, Steven Verhaverbeke, Giback Park
  • Patent number: 11823954
    Abstract: Non-planar I/O and logic semiconductor devices having different workfunctions on common substrates and methods of fabricating non-planar I/O and logic semiconductor devices having different workfunctions on common substrates are described. For example, a semiconductor structure includes a first semiconductor device disposed above a substrate. The first semiconductor device has a conductivity type and includes a gate electrode having a first workfunction. The semiconductor structure also includes a second semiconductor device disposed above the substrate. The second semiconductor device has the conductivity type and includes a gate electrode having a second, different, workfunction.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Roman W. Olac-Vaw, Walid M. Hafez, Chia-Hong Jan, Pei-Chi Liu
  • Patent number: 11824103
    Abstract: In a method of manufacturing a semiconductor device, a fin structure protruding from an isolation insulating layer disposed over a substrate is formed, a sacrificial gate dielectric layer is formed over the fin structure, a polysilicon layer is formed over the sacrificial gate dielectric layer, a mask pattern is formed over the polysilicon layer, and the polysilicon layer is patterned into a sacrificial gate electrode using the mask pattern as an etching mask. The sacrificial gate electrode has a narrow portion above a level of a top of the fin structure such that a width of the sacrificial gate electrode decreases, takes a local minimum, and then increases from the top of the fin structure.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Wei Pan, Jen-Chih Hsueh, Li-Feng Chu, Chih-Teng Liao
  • Patent number: 11824129
    Abstract: The present disclosure provides a photo sensing device including a substrate, including a silicon layer at a front surface, a photosensitive member extending into and at least partially surrounded by the silicon layer, wherein the silicon layer includes a first doped region adjacent to a first side of the photosensitive member, wherein the first doped region has a first conductivity type, and a second doped region adjacent to a second side of the photosensitive member opposite to the first side, wherein the second doped region has a second conductivity type different from the first conductivity type, and a composite layer disposed between the photosensitive member and the silicon layer and surrounding the photosensitive member, and a portion of the composite layer proximal to the first doped region is doped with a dopant having the first conductivity type.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventor: Chan-Hong Chern
  • Patent number: 11817504
    Abstract: A semiconductor structure includes a stack of semiconductor layers disposed over a substrate, a metal gate structure disposed over and interleaved with the stack of semiconductor layers, the metal gate structure including a gate electrode disposed over a gate dielectric layer, a first isolation structure disposed adjacent to a first sidewall of the stack of semiconductor layers, where the gate dielectric layer fills space between the first isolation structure and the first sidewall of the stack of semiconductor layers, and a second isolation structure disposed adjacent to a second sidewall of the stack of semiconductor layers, where the gate electrode fills the space between the second isolation structure and the second sidewall of the stack of semiconductor layers.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Shi Ning Ju, Kuo-Cheng Chiang, Guan-Lin Chen, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 11798855
    Abstract: An electronic module comprises a substrate including a first surface and a second surface on a side opposite to the first surface, the second surface including a first region and a second region surrounding the first region, an electronic device attached to the first surface, a component attached to the first region of the second surface, a lid member positioned to face the electronic device, and a frame member attached to the substrate to support the lid member. A first member and a second member having a higher thermal conductivity than the first member are disposed at least on the second surface. At least a part of the second member is positioned to face the second region. At least a part of the first member is positioned between the second member and the component.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: October 24, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yu Katase
  • Patent number: 11784263
    Abstract: The invention relates to a method for improving the ohmic-contact behaviour between a contact grid and an emitter layer of a silicon solar cell. The object of the invention is to propose a method for improving the ohmic-contact behaviour between a contact grid and an emitter layer of a silicon solar cell, in which the effects on materials caused by irradiation of the sun-facing side are further minimized. In addition, the method should also be applicable to silicon solar cells in which the emitter layer has a high sheet resistance.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: October 10, 2023
    Assignee: CE CELL ENGINEERING GMBH
    Inventor: Hongming Zhao
  • Patent number: 11777034
    Abstract: A stacked transistor device is provided. The stacked transistor device includes a nanosheet transistor device on a substrate; and a fin field effect transistor device over the nanosheet transistor device to form the stacked transistor device, wherein the fin field effect transistor device is configured to have a current flow through the fin field effect transistor device perpendicular to a current flow through the nanosheet transistor device.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: October 3, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruilong Xie, Chen Zhang, Jingyun Zhang, Junli Wang, Pietro Montanini
  • Patent number: 11777016
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, a semiconductor structure includes a source feature and a drain feature, a channel structure disposed between the source feature and the drain feature, a semiconductor layer disposed over the channel structure and the drain feature, a dielectric layer disposed over the semiconductor layer, a backside source contact over the source feature and extending through the semiconductor layer and the dielectric layer, and a backside power rail disposed over the dielectric layer and in contact with the backside source contact.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Wei Wang, Chih-Chuan Yang, Yu-Kuan Lin, Choh Fei Yeap
  • Patent number: 11777004
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a first inter-layer dielectric (ILD) layer formed over the fin structure. The FinFET device structure includes a gate structure formed in the first ILD layer, and a first S/D contact structure formed in the first ILD layer and adjacent to the gate structure. The FinFET device structure also includes a first air gap formed on a sidewall of the first S/D contact structure, and the first air gap is in direct contact with the first ILD layer.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: October 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan Lee, I-Wen Wu, Chen-Ming Lee, Jian-Hao Chen, Fu-Kai Yang, Feng-Cheng Yang, Mei-Yun Wang, Yen-Ming Chen
  • Patent number: 11769845
    Abstract: The present disclosure provides a photo sensing device, the photo sensing device includes a substrate, including a silicon layer at a front surface, a photosensitive member extending into and at least partially surrounded by the silicon layer, a first doped region having a first conductivity type at a first side of the photosensitive member, wherein the first doped region is in the silicon layer, and a second doped region having a second conductivity type different from the first conductivity type at a second side of the photosensitive member opposite to the first side, wherein the second doped region is in the silicon layer, and the first doped region is apart from the second doped region, and a superlattice layer disposed between the photosensitive member and the silicon layer, wherein the superlattice layer includes a first material and a second material different from the first material.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chan-Hong Chern, Weiwei Song, Chih-Chang Lin, Lan-Chou Cho, Min-Hsiang Hsu
  • Patent number: 11769846
    Abstract: A photodetector is provided. The photodetector includes a bottom electrode region in a semiconductor layer, a light absorption material in the semiconductor layer, and a first buffer layer sandwiched between a bottom surface of the light absorption material and the semiconductor layer. The first buffer layer includes, from bottom to top, a first Si layer, a first SiGe layer, a second Si layer, and a second SiGe layer. A first atomic percentage of Ge in the first SiGe layer is less than a second atomic percentage of Ge in the second SiGe layer. The photodetector further includes a top electrode region over the light absorption material.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chan-Hong Chern
  • Patent number: 11764319
    Abstract: Discloses is a method of manufacturing a solar cell with an increased power generation area to increase the area used for actual power generation without increasing the size of the solar cell.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: September 19, 2023
    Assignee: SOLARFLEX CO., LTD.
    Inventor: Ki Ju Park