Patents Examined by Eugene Lee
  • Patent number: 10249508
    Abstract: A method for manufacturing a semiconductor device includes forming a first semiconductor layer on a semiconductor substrate, forming a first insulator layer on the first semiconductor layer, forming a patterned second semiconductor layer on the first insulator layer, the patterned second semiconductor layer having an actual thickness greater than a target thickness and exposing a portion of the first insulator layer; forming a second insulator layer as a spacer on the exposed portion of the first insulator layer, and performing an etching process on the patterned second semiconductor layer until the second semiconductor layer has the target thickness and concurrently removing the second insulator layer. The method can eliminate capillary etching of the spacer in a subsequent removal of the first insulator layer.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: April 2, 2019
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventor: Xianchao Wang
  • Patent number: 10249551
    Abstract: An electronic component includes one or more semiconductor dice embedded in a first dielectric layer, a heat-spreader embedded in a second dielectric layer and a heat-sink thermally coupled to the heat-spreader. The heat-spreader has a higher thermal conductivity in directions substantially parallel to the major surface of the one or more semiconductor dice than in directions substantially perpendicular to the major surface of the one or more semiconductor dice. The heat-sink has a thermal conductivity in directions substantially perpendicular to the major surface of the one or more semiconductor dice that is higher than the thermal conductivity of the heat-spreader in directions substantially perpendicular to the major surface of the one or more semiconductor dice. The heat-spreader and the heat-sink provide a heat dissipation path from the one or more semiconductor dice having a lateral thermal resistance which increases with increasing distance from the one or more semiconductor devices.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 2, 2019
    Assignee: Infineon Technologies Austria AG
    Inventor: Martin Standing
  • Patent number: 10243003
    Abstract: The thin film transistor includes: a gate electrode formed on a surface of a substrate; a polysilicon layer formed on an upper side of the gate electrode; an amorphous silicon layer formed on the polysilicon layer so as to cover the same; an n+ silicon layer formed on an upper side of the amorphous silicon layer; and a source electrode and a drain electrode which are formed on the n+ silicon layer, wherein, in a projected state in which the polysilicon layer, the source electrode and the drain electrode are projected onto the surface of the substrate, a part of the polysilicon layer and a part of each of the source electrode and the drain electrode are adapted so as to be overlapped with each other, and in the projected state, a minimum dimension, in a width direction orthogonal to a length direction between the source electrode and the drain electrode, of the polysilicon layer located between the source electrode and the drain electrode is smaller than dimensions in the width direction of the source electrod
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: March 26, 2019
    Assignee: Sakai Display Products Corporation
    Inventors: Nobutake Nodera, Shigeru Ishida, Ryohei Takakura, Yoshiaki Matsushima, Takao Matsumoto, Kazuki Kobayashi, Taimi Oketani
  • Patent number: 10243000
    Abstract: Provided are a 3-dimensional non-volatile memory device and a method of fabricating the same. The 3-dimensional non-volatile memory device may include a substrate; semiconductor pillars, which are arranged at a certain interval in a first direction and a second direction different from the first direction; a string isolation film, which is arranged between the semiconductor pillars arranged in the first direction among the semiconductor pillars and extends in the first direction and a third direction vertical to the main surface of the substrate; first sub-electrodes repeatedly stacked on the substrate in the third direction; second sub-electrodes, which are electrically isolated from the first sub-electrodes by the string isolation film, and are repeatedly stacked on the substrate in the third direction; and information storage films including a first information storage film and a second information storage film.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: March 26, 2019
    Assignee: UNIVERSITY-INDUSTRY FOUNDATION (UIF), YONSEI UNIVERSITY
    Inventors: Hyun Chul Sohn, Hee Do Na, Young Mo Kim
  • Patent number: 10242867
    Abstract: A method of fabricating a FinFET device includes forming contact openings for source/drain contacts prior to performing a replacement metal gate (RMG) module. Etch selective metals are used to form source/drain contacts and gate contacts optionally within active device regions using a block and recess technique.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: March 26, 2019
    Assignee: GLOBALFOUNDARIES INC.
    Inventors: Guillaume Bouche, Vimal Kamineni
  • Patent number: 10236237
    Abstract: Disconnection of a base line is suppressed even when a short-side direction of a collector layer is parallel to crystal orientation [011]. A bipolar transistor includes: a collector layer that has a long-side direction and a short-side direction in a plan view, in which the short-side direction is parallel to crystal orientation [011], a cross-section perpendicular to the short-side direction has an inverted mesa shape, and a cross-section perpendicular to the long-side direction has a forward mesa shape; a base layer that is formed on the collector layer; a base electrode that is formed on the base layer; and a base line that is connected to the base electrode and that is drawn out from an end in the short-side direction of the collector layer to the outside of the collector layer in a plan view.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: March 19, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kenji Sasaki
  • Patent number: 10236384
    Abstract: A finFET structure, and method of forming such structure, in which a germanium enriched nanowire is located in the channel region of the FET, while simultaneously having silicon-germanium fin in the source/drain region of the finFET.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: March 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Pouya Hashemi, Ali Khakifirooz, John A. Ott, Alexander Reznicek
  • Patent number: 10236367
    Abstract: A device includes a substrate, a first well doped with dopants of a first conductivity type defined in the substrate, and a second well doped with dopants of a second conductivity type different than the first conductivity type defined in the substrate adjacent the first well to define a PN junction. The second well includes a silicon alloy portion displaced from the PN junction. A collector region contacts one of the first or second wells and has a dopant concentration higher than its contacted well. An emitter region contacts the other of the first or second wells and is doped with dopants of the first or second conductivity type different than the first or second well contacted by the emitter region. A base region contacts the other of the first or second well and has a dopant concentration higher than the first or second well contacted by the base region.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: March 19, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jagar Singh, Shiv Kumar Mishra
  • Patent number: 10231324
    Abstract: Some novel features pertain to an integrated device that includes a first metal layer and a second metal layer. The first metal layer includes a first set of regions. The first set of regions includes a first netlist structure for a power distribution network (PDN) of the integrated device. The second metal layer includes a second set of regions. The second set of regions includes a second netlist structure of the PDN of the integrated device. In some implementations, the second metal layer further includes a third set of regions comprising the first netlist structure for the PDN of the integrated device. In some implementations, the first metal layer includes a third set of regions that includes a third netlist structure for the PDN of the integrated device. The third set of regions is non-overlapping with the first set of regions of the first metal layer.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: March 12, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Ryan David Lane, Yue Li, Charles David Paynter, Ruey Kae Zang
  • Patent number: 10217688
    Abstract: An electronic component includes one or more semiconductor dice embedded in a first dielectric layer, a heat-spreader embedded in a second dielectric layer and a heat-sink thermally coupled to the heat-spreader. The heat-spreader has a higher thermal conductivity in directions substantially parallel to the major surface of the one or more semiconductor dice than in directions substantially perpendicular to the major surface of the one or more semiconductor dice. The heat-sink has a thermal conductivity in directions substantially perpendicular to the major surface of the one or more semiconductor dice that is higher than the thermal conductivity of the heat-spreader in directions substantially perpendicular to the major surface of the one or more semiconductor dice. The heat-spreader and the heat-sink provide a heat dissipation path from the one or more semiconductor dice having a lateral thermal resistance which increases with increasing distance from the one or more semiconductor devices.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: February 26, 2019
    Assignee: Infineon Technologies Austria AG
    Inventor: Martin Standing
  • Patent number: 10217702
    Abstract: A semiconductor device includes a BGA package including first bumps. A first semiconductor die is mounted to the BGA package between the first bumps. The BGA package and first semiconductor die are mounted to a carrier. A first encapsulant is deposited over the carrier and around the BGA package and first semiconductor die. The carrier is removed to expose the first bumps and first semiconductor die. An interconnect structure is electrically connected to the first bumps and first semiconductor die. The BGA package further includes a substrate and a second semiconductor die mounted, and electrically connected, to the substrate. A second encapsulant is deposited over the second semiconductor die and substrate. The first bumps are formed over the substrate opposite the second semiconductor die. A warpage balance layer is formed over the BGA package.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 26, 2019
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Yaojian Lin, Kang Chen
  • Patent number: 10217856
    Abstract: A semiconductor device includes: a first base layer; a drain layer disposed on the back side surface of the first base layer; a second base layer formed on the surface of the first base layer; a source layer formed on the surface of the second base layer; a gate insulating film disposed on the surface of both the source layer and the second base layer; a gate electrode disposed on the gate insulating film; a column layer formed in the first base layer of the lower part of both the second base layer and the source layer by opposing the drain layer; a drain electrode disposed in the drain layer; and a source electrode disposed on both the source layer and the second base layer, wherein heavy particle irradiation is performed to the column layer to form a trap level locally.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: February 26, 2019
    Assignee: ROHM CO., LTD.
    Inventor: Toshio Nakajima
  • Patent number: 10211069
    Abstract: An apparatus including a printed circuit board including a body of a plurality of alternating layers of conductive material and insulating material; and a package including a die disposed within the body of the printed circuit board. A method including forming a printed circuit board including a core and a build-up section including alternating layers of conductive material and insulating material coupled to the core; and coupling a package including a die to the core of the printed circuit board such that at least a portion of a sidewall of the package is embedded in at least a portion of the build-up section. An apparatus including a printed circuit board including a body; a computing device including a package including a microprocessor disposed within the body of the printed circuit board; and a peripheral device that provides input or output to the computing device.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 19, 2019
    Assignee: Intel Corporation
    Inventor: Tin Poay Chuah
  • Patent number: 10204889
    Abstract: A package structure includes a semiconductor device, a first dielectric layer, a redistribution line and a conductive bump. The first dielectric layer is over the semiconductor device and has first and second openings on opposite surfaces of the first dielectric layer, wherein the first and second openings taper in substantially opposite direction. The redistribution line is partially in the first opening of the first dielectric layer and electrically connected to the semiconductor device. The conductive bump is partially embeddedly retained in the second opening and electrically connected to the redistribution line.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: February 12, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jing-Cheng Lin, Po-Hao Tsai
  • Patent number: 10199338
    Abstract: A semiconductor device includes plural electrode pads arranged in an active region of a semiconductor chip, and wiring layers provided below the plural electrode pads wherein occupation rates of wirings arranged within the regions of the electrode pads are, respectively, made uniform for every wiring layer. To this end, in a region where an occupation rate of wiring is smaller than those in other regions, a dummy wiring is provided. On the contrary, when the occupation rate of wiring is larger than in other regions, slits are formed in the wiring to control the wiring occupation rate. In the respective wirings layers, the shapes, sizes and intervals of wirings below the respective electrode pads are made similar or equal to one another.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: February 5, 2019
    Assignee: Renesas Electronics Corporation
    Inventors: Taku Kanaoka, Masashi Sahara, Yoshio Fukayama, Yutaro Ebata, Kazuhisa Higuchi, Koji Fujishima
  • Patent number: 10199269
    Abstract: A conductive structure includes a substrate including a first dielectric layer formed thereon, at least a first opening formed in the first dielectric layer, a low resistive layer formed in the opening, and a first metal bulk formed on the lower resistive layer in the opening. The first metal bulk directly contacts a surface of the first low resistive layer. The low resistive layer includes a carbonitride of a first metal material, and the first metal bulk includes the first metal material.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: February 5, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Li-Han Chen, Yen-Tsai Yi, Chun-Chieh Chiu, Min-Chuan Tsai, Wei-Chuan Tsai, Hsin-Fu Huang
  • Patent number: 10199485
    Abstract: A semiconductor device includes a substrate including a first semiconductor material, a gate structure formed on the substrate, and a source stressor and a drain stressor formed in the substrate respectively in a recess at two sides of the gate structure. The source stressor and the drain stressor respectively include at least a first quantum wire and at least a second quantum wire formed on the first quantum wire. The first quantum wire includes the first semiconductor material and a second semiconductor material, and a lattice constant of the second semiconductor material is larger than a lattice constant of the first semiconductor material. And the second quantum wire includes the second semiconductor material.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: February 5, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Ying Lin, Chueh-Yang Liu, Yu-Ren Wang
  • Patent number: 10192924
    Abstract: An image pickup device according to the present disclosure includes a first pixel and a second pixel each including a photodetection section and a light condensing section, the photodetection section including a photoelectric conversion element, the light condensing section condensing incident light toward the photodetection section, the first pixel and the second pixel being adjacent to each other and each having a step part on a photodetection surface of the photodetection section, in which at least a part of a wall surface of the step part is covered with a first light shielding section.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: January 29, 2019
    Assignee: Sony Corporation
    Inventors: Takeshi Yanagita, Suguru Saito, Kaoru Koike
  • Patent number: 10192904
    Abstract: A manufacturing method of an array substrate, including: forming a pattern layer including a pixel electrode, and a pattern layer including a gate electrode and a gate line on a base substrate; on the substrate with the pattern layer including the gate electrode and the gate line formed thereon, forming a gate insulating layer, a pattern layer at least including a metal oxide semiconductor active layer and a pattern layer at least including an etch stop layer; wherein, a first via hole for exposing the pixel electrode is formed over the pixel electrode; on the substrate with the etch stop layer formed thereon, forming a pattern layer including a source electrode, a drain electrode and a data line; wherein, the source electrode and the drain electrode each contact a metal oxide semiconductor active layer, and the drain electrode is electrically connected to the pixel electrode through the first via hole.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: January 29, 2019
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Xiang Liu
  • Patent number: 10192879
    Abstract: An improvement is achieved in the performance of a semiconductor device having a nonvolatile memory. A memory cell of the nonvolatile memory includes a control gate electrode formed over a semiconductor substrate via a first insulating film and a memory gate electrode formed over the semiconductor substrate via a second insulating film to be adjacent to the control gate electrode via the second insulating film. The second insulating film includes a third insulating film made of a silicon dioxide film, a fourth insulating film made of a silicon nitride film over the third insulating film, and a fifth insulating film over the fourth insulating film. The fifth insulating film includes a silicon oxynitride film. Between the memory gate electrode and the semiconductor substrate, respective end portions of the fourth and fifth insulating films are located closer to a side surface of the memory gate electrode than an end portion of a lower surface of the memory gate electrode.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: January 29, 2019
    Assignee: Renesas Electronics Corporation
    Inventor: Tamotsu Ogata