Patents Examined by Grant S Withers
  • Patent number: 11476336
    Abstract: According to one embodiment, a semiconductor device includes first, second and third electrodes, first and second semiconductor layers, and a first compound member. A position of the third electrode is between a position of the second electrode and a position of the first electrode. The first semiconductor layer includes first, second, third, fourth, and fifth partial regions. The fourth partial region is between the third and first partial regions. The fifth partial region is between the second and third partial regions. The second semiconductor layer includes first, second, and third semiconductor regions. The third semiconductor region is between the first partial region and the first electrode. The first compound member includes first compound portions between the third semiconductor region and the first electrode. A portion of the first electrode is between one of the first compound portions and an other one of the first compound portions.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 18, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Hiroshi Ono, Akira Mukai, Yosuke Kajiwara, Daimotsu Kato, Aya Shindome, Masahiko Kuraguchi
  • Patent number: 11469226
    Abstract: In an embodiment, an integrated circuit includes transistors in different active regions, electrically isolated using single diffusion break isolation. The single diffusion break isolation includes a first dummy transistor that has a different threshold voltage than the transistors in either active region for which the single diffusion break is creating isolation. The first dummy transistor may have lower leakage current than transistors in either active region, creating effective isolation between the active regions and consuming relatively small amounts of power due to the lower leakage currents.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: October 11, 2022
    Assignee: Apple Inc.
    Inventors: Emre Alptekin, Thomas Hoffmann
  • Patent number: 11469242
    Abstract: There is provided a semiconductor memory device including: a substrate having a Complementary Metal Oxide Semiconductor (CMOS) circuit; a gate stack structure including interlayer insulating layers and conductive patterns, which are alternately stacked in a vertical direction on the substrate; a channel structure having a first part penetrating the gate stack structure and a second part extending from one end of the first part, the second part extending beyond the gate stack structure; a common source line extending to overlap with the gate stack structure, the common source line surrounding the second part of the channel structure; a memory layer disposed between the first part of the channel structure and the gate stack structure; and a bit line connected to the other end of the first part of the channel structure, the bit line being disposed between the substrate and the gate stack structure.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 11, 2022
    Assignee: SK hynix Inc.
    Inventor: Nam Jae Lee
  • Patent number: 11469356
    Abstract: A light source device includes: a light-shielding member defining an opening; a light-guide member located in the opening in a top view and including two or more divided lens portions; and a plurality of light-emitting parts disposed such that each of the plurality of light-emitting parts corresponds to a respective one of the lens portions, each of the plurality of light-emitting parts being configured to be individually turned on. Each of the light-emitting parts has an upper surface serving as a light-emitting surface. The two or more lens portions are Fresnel lenses. Irradiation areas corresponding to the light-emitting parts are at least partially different from each other.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: October 11, 2022
    Assignee: NICHIA CORPORATION
    Inventors: Tsuyoshi Okahisa, Norimasa Yoshida
  • Patent number: 11437473
    Abstract: A nitride semiconductor device includes: a first nitride semiconductor layer constituting an electron transit layer; a second nitride semiconductor layer formed on the first nitride semiconductor layer and constituting an electron supply layer; a ridge-shaped gate portion formed on the second nitride semiconductor layer; and a source electrode and a drain electrode disposed on the second nitride semiconductor layer so as to face each other with the ridge-shaped gate portion interposed therebetween, wherein the ridge-shaped gate portion includes: a nitride semiconductor gate layer containing acceptor-type impurities and disposed on the second nitride semiconductor layer; a gate metal film disposed on the nitride semiconductor gate layer; a gate insulating film formed on the gate metal film; and a gate electrode capacitively-coupled to the gate metal film by the gate insulating film.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: September 6, 2022
    Assignee: ROHM CO., LTD.
    Inventor: Hirotaka Otake
  • Patent number: 11437400
    Abstract: Embodiments of through array contact structures of a 3D memory device and fabricating method thereof are disclosed. The method comprises: forming a recess region in a substrate including multiple protruding islands; forming a gate dielectric layer to cover top surfaces and sidewalls of the multiple protruding islands and a top surface of the recess region of the substrate; forming an underlying sacrificial layer on the gate dielectric layer to surround the sidewalls of the multiple protruding islands; forming an alternating dielectric stack including multiple alternatively stacked insulating layers and sacrificial layers on the underlying sacrificial layer and the multiple protruding islands; forming multiple channel holes penetrating the alternating dielectric stack, each channel hole is located corresponding to one of the multiple protruding islands; and forming a memory layer in each channel hole, wherein a channel layer of the memory layer is electrically connected with a corresponding protruding island.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 6, 2022
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Ziqi Chen, Guanping Wu
  • Patent number: 11437504
    Abstract: Group III-N transistors of complementary conductivity type employing two polarization junctions of complementary type. Each III-N polarization junction may include two III-N material layers having opposite crystal polarities. The opposing polarities may induce a two-dimensional charge sheet within each of the two III-N material layers. Opposing crystal polarities may be induced through introduction of an intervening layer between two III-N material layers. A III-N heterostructure may include two III-N polarization junctions. A 2D electron gas (2DEG) is induced at a first polarization junction and a 2D hole gas (2DHG) is induced at the second polarization junction. Transistors of complementary type may utilize a separate one of the polarization junctions, enabling III-N transistors to implement CMOS circuitry.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic
  • Patent number: 11430875
    Abstract: A first barrier layer, a channel layer, a second barrier layer, and a first bonding layer made of high-resistance AlGaN doped with Fe are formed on a first substrate. Thereafter, the first substrate and the second substrate are pasted in a state where the first bonding layer and a second bonding layer made of high-resistance GaN doped with Fe are opposed to each other.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 30, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takuya Hoshi, Yuki Yoshiya, Hiroki Sugiyama, Hideaki Matsuzaki
  • Patent number: 11424354
    Abstract: A Group III-Nitride (III-N) device structure is provided comprising: a heterostructure having three or more layers comprising III-N material, an anode n+ region and a cathode comprising donor dopants, wherein the anode n+ region and the cathode are on the first layer of the heterostructure and wherein the anode n+ region and the cathode extend beyond the heterostructure, and an anode metal region within a recess that extends through two or more of the layers, wherein the anode metal region is in electrical contact with the first layer, wherein the anode metal region comprises a first width within the recess and a second width beyond the recess, and wherein the anode metal region is coupled with the anode n+ region. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger
  • Patent number: 11417616
    Abstract: A package structure includes a chip package and an antenna package. The chip package includes at least one semiconductor die and a first insulating encapsulation encapsulating the at least one semiconductor die. The antenna package is located on and electrically coupled to the chip package. The antenna package includes metallic patterns embedded in a second insulating encapsulation, wherein each of the metallic patterns has a first surface, a second surface opposite to the first surface and a side surface connecting the first surface and the second surface, wherein the first surface and the side surface of each of the metallic patterns are covered by the second insulating encapsulation, and the second surface is levelled and coplanar with a third surface of the second insulating encapsulation. A method of manufacturing a package structure is also provided.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: August 16, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Chiang Wu, Han-Ping Pu, Yen-Ping Wang
  • Patent number: 11393905
    Abstract: A nitride semiconductor device includes a first impurity layer made of an Al1-XGaXN (0<X?1) based material and containing a first impurity with which a depth of an acceptor level from a valence band (ET-EV) is made not less than 0.3 eV but less than 0.6 eV, an electron transit layer formed on the first impurity layer, an electron supply layer formed on the electron transit layer, agate electrode formed on the electron transit layer, and a source electrode and a drain electrode formed such that the source electrode and the drain electrode sandwich the gate electrode and electrically connected to the electron supply layer.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 19, 2022
    Assignee: ROHM CO., LTD.
    Inventors: Norikazu Ito, Taketoshi Tanaka, Ken Nakahara
  • Patent number: 11387166
    Abstract: Devices are formed on a substrate. A first-tier alternating stack of first insulating layers and first spacer material layers having first stepped surfaces and a first retro-stepped dielectric material portion are formed over the substrate. A sacrificial contact via structure is formed through the first retro-stepped dielectric material portion. A second-tier alternating stack of second insulating layers and second spacer material layers is formed with second stepped surfaces. A second retro-stepped dielectric material portion including a doped silicate glass liner and a silicate glass material portion is formed over the second stepped surfaces. Memory stack structures are formed through the second-tier alternating stack and the first-tier alternating stack. A contact via cavity is formed down to the sacrificial contact via structure. The doped silicate glass liner is recessed and the sacrificial contact via structure is removed, to form a contact via structure in the contact via cavity.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: July 12, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventor: Keigo Kitazawa
  • Patent number: 11380767
    Abstract: A high electron mobility transistor (HEMT) includes a group III-V channel layer, a passivation layer, a group III-V barrier layer, a gate structure, and a source/drain electrode. The passivation layer is disposed on the group III-V channel layer and includes a gate contact hole and a source/drain contact hole, and the group III-V barrier layer is disposed between the group III-V channel layer and the passivation layer. The gate structure includes group III-V gate layer, a gate etch stop layer, and a gate electrode which are stacked in sequence. The gate electrode is disposed in the gate contact hole and conformally covers a portion of the top surface of the passivation layer. The source/drain electrode is disposed in the source/drain contact hole and conformally covers another portion of the top surface of the passivation layer.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: July 5, 2022
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Ting-En Hsieh, Yu-Chieh Chou, Yung-Fong Lin
  • Patent number: 11380677
    Abstract: According to various embodiments, a transistor device may include a semiconductor structure having a trench formed therein. The semiconductor structure may include a buffer layer and a barrier layer arranged over the buffer layer. The trench may extend at least to the buffer layer. The transistor device may include a source terminal, a drain terminal, and a gate terminal arranged between the source terminal and the drain terminal. The gate terminal may extend into the trench. The transistor device may include an electrode component. The electrode component may include an electrode. The electrode component may extend into the trench where the electrode component is separated from the gate terminal. The electrode component may contact a side wall of the trench.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: July 5, 2022
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Jiacheng Lei, Lawrence Selvaraj Susai
  • Patent number: 11373995
    Abstract: A Group III-Nitride (III-N) device structure is presented comprising: a heterostructure having three or more layers comprising III-N material, a cathode comprising donor dopants, wherein the cathode is on a first layer of the heterostructure, an anode within a recess that extends through two or more of the layers of the heterostructure, wherein the anode comprises a first region wherein the anode is separated from the heterostructure by a high k dielectric material, and a second region wherein the anode is in direct contact with the heterostructure, and a conducting region in the first layer in direct contact to the cathode and conductively connected to the anode. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
  • Patent number: 11367615
    Abstract: A method of fabricating transistors with short gate length by two-step photolithography is provided. This method utilizes the two-step photolithography by a stepper as well as controlling a first exposed position and a second exposed position to change the gate length.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 21, 2022
    Assignee: National Chiao Tung University
    Inventors: Yi Chang, Yueh-Chin Lin, Po-Sheng Chang
  • Patent number: 11362206
    Abstract: A nitride semiconductor device includes: a substrate having a first main surface and a second main surface; a first nitride semiconductor layer of a first conductivity type provided above the first main surface; a second nitride semiconductor layer of a second conductivity type provided above the first nitride semiconductor layer; a first opening which penetrates through the second nitride semiconductor layer to the first nitride semiconductor layer; an electron transport layer provided above the second nitride semiconductor layer and on an inner surface of the first opening; a gate electrode provided above the electron transport layer and covering the first opening; a source electrode connected to the second nitride semiconductor layer; a drain electrode provided on a second main surface-side of the substrate; and a high-resistance layer provided between the second nitride semiconductor layer and the electron transport layer in the first opening, the high-resistance layer including a nitride semiconductor.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: June 14, 2022
    Assignee: PANASONIC CORPORATION
    Inventors: Masahiro Ogawa, Daisuke Shibata, Satoshi Tamura
  • Patent number: 11355527
    Abstract: A display panel and a preparation method thereof, and a display device are disclosed. The display panel includes a display region and a bending region located outside the display region. The display panel includes a source-and-drain electrode metal layer. The display panel includes an organic photoresist layer in the bending region. A bending-region interlayer dielectric layer is disposed at one side of the organic photoresist layer near the source-and-drain electrode metal layer. Source-and-drain electrode traces can be prevented from breaking.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: June 7, 2022
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Ding Ding
  • Patent number: 11349012
    Abstract: In an embodiment, a Group III nitride-based transistor device, includes a first. Group III nitride barrier layer arranged on a Group III nitride channel layer, the first Group III nitride barrier layer and the Group III nitride channel layer having differing bandgaps and forming a heterojunction capable of supporting a two-dimensional charge gas. A source, a gate and a drain are on an upper surface of the first Group III nitride barrier layer. A gate recess extends from the upper surface of the first. Group III nitride barrier layer into the first Group III nitride barrier layer. A p-doped Group III nitride material arranged in the gate recess has a first extension extending on the upper surface of the first Group III nitride barrier layer towards the drain. The first extension has a length ld, and 0 nm?ld?200 nm.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: May 31, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Clemens Ostermaier, Oliver Haeberlen, Gerhard Prechtl, Manuel Stabentheiner
  • Patent number: 11335801
    Abstract: A device including a III-N material is described. In an example, a device includes a first layer including a first group III-nitride (III-N) material and a polarization charge inducing layer, including a second III-N material, above the first layer. The device further includes a gate electrode above the polarization charge inducing layer and a source structure and a drain structure on opposite sides of the gate electrode. The source structure and the drain structure both include a first portion adjacent to the first layer and a second portion above the first portion, the first portion includes a third III-N material with an impurity dopant, and the second portion includes a fourth III-N material, where the fourth III-N material includes the impurity dopant and further includes indium, where the indium content increases with distance from the first portion.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: May 17, 2022
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta