Patents Examined by Grant Withers
  • Patent number: 8936961
    Abstract: A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell.
    Type: Grant
    Filed: May 26, 2012
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Bahman Hekmatshoartabari, Paul A. Lauro, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8933472
    Abstract: An array substrate, which is formed with a gate electrode (2), a source electrode (5), a drain electrode (6), a gate insulating layer (3), an active layer (4) and a passivation layer (9) in a thin film transistor region, and with the gate insulating layer (3), a pixel electrode (7), the passivation layer (9) and a common electrode (8) in a pixel electrode pattern region, and a color resin layer (11) is formed between the passivation layer (9) and the common electrode (8). Since the color resin layer (11) for planarization is formed on the passivation layer (9), the horizontal driving manner may be suitably applied in order to reduce light leakage, to improve contrast ratio and aperture ratio of a panel and to lower production costs.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: January 13, 2015
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Youngsuk Song, Seongyeol Yoo, Seungjin Choi
  • Patent number: 8932951
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming patterned features over the semiconductor substrate, wherein gaps are formed between the patterned features; filling the gaps with a first filling material, wherein the first filling material has a first top surface higher than top surfaces of the patterned features; and performing a first planarization to lower the top surface of the first filling material, until the top surfaces of the patterned features are exposed. The method further includes depositing a second filling material, wherein the second filling material has a second top surface higher than the top surfaces of the patterned features; and performing a second planarization to lower the top surface of the second filling material, until the top surfaces of the patterned features are exposed.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Yuan Wu, Kong-Beng Thei, Chiung-Han Yeh, Harry-Hak-Lay Chuang, Mong-Song Liang
  • Patent number: 8927966
    Abstract: A dynamic random access memory unit and a method for fabricating the same are provided. The dynamic random access memory unit comprises: a substrate; an insulating buried layer formed on the substrate; a body region formed on the insulating buried layer and used as a charge storing region; two isolation regions formed on the body region, in which a semiconductor contact region is formed between the isolation regions and is a charge channel; a source, a drain and a channel region formed on the isolation regions and the semiconductor contact region respectively and constituting a transistor operating region which is partially separated from the charge storing region by the isolation regions and connected with the charge storing region via the charge channel; a gate dielectric layer formed on the transistor operating region, a gate formed on the gate dielectric layer; a source metal contact layer, a drain metal contact layer.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: January 6, 2015
    Assignee: Tsinghua University
    Inventors: Libin Liu, Renrong Liang, Jing Wang, Jun Xu
  • Patent number: 8921220
    Abstract: A method for forming a selective ohmic contact for a Group III-nitride heterojunction structured device may include forming a conductive layer and a capping layer on an epitaxial substrate including at least one Group III-nitride heterojunction layer and having a defined ohmic contact region, the capping layer being formed on the conductive layer or between the conductive layer and the Group III-nitride heterojunction layer in one of the ohmic contact region and non-ohmic contact region, and applying at least one of a laser annealing process and an induction annealing process on the substrate at a temperature of less than or equal to about 750° C. to complete the selective ohmic contact in the ohmic contact region.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Xianyu Wenxu, Jeong-Yub Lee, Chang -youl Moon, Yong-Young Park, Woo Young Yang, Jae-Joon Oh, In-Jun Hwang
  • Patent number: 8921125
    Abstract: A ferroelectric capacitor comprising a transistor layer superimposed on a semiconductor substrate, a ferroelectric capacitor layer provided superior to the transistor layer, a wiring layer provided superior to the ferroelectric capacitor layer, and a passivation film. Further, at least one layer of barrier film capable of inhibiting penetration of moisture and hydrogen into the underlayer is provided between the ferroelectric capacitor layer and the passivation film, and the passivation film is characterized by containing a novolac resin.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: December 30, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 8907353
    Abstract: There is provided a process for forming a layer of electroactive material having a substantially flat profile. The process includes the steps of providing a workpiece having at least one active area; depositing a liquid composition including the electroactive material onto the workpiece in the active area, to form a wet layer; treating the wet layer on the workpiece at a controlled temperature in the range of ?25 to 80° C. and under a vacuum in the range of 10?6 to 1,000 Torr, for a first period of 1-100 minutes, to form a partially dried layer; and heating the partially dried layer to a temperature above 100° C. for a second period of 1-50 minutes to form a dried layer.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: December 9, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Reid John Chesterfield, Nugent Truong, Jeffrey A Merlo, Adam Fennimore, Jonathan M Ziebarth
  • Patent number: 8901745
    Abstract: A three-dimensional semiconductor device may include a substrate including wiring and contact regions and a thin film structure on the wiring and contact regions of the substrate. The thin-film structure may include a plurality of alternating wiring layers and inter-layer insulating layers defining a terraced structure in the contact region so that each of the wiring layers includes a contact surface in the contact region that extends beyond others of the wiring layers more distant from the substrate. A plurality of contact structures may extend in a direction perpendicular to a surface of the substrate with each of the contact structures being electrically connected to a contact surface of a respective one of the wiring layers. Related methods are also discussed.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: December 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Hwang, Hansoo Kim, Wonseok Cho, Jaehoon Jang
  • Patent number: 8895397
    Abstract: Methods are provided for manufacturing a thin film storage memory cell. The method includes forming a long select gate on a substrate, and forming thin film storage crystals overlying the long select gate and the adjacent substrate. A left and right control gate are formed on opposite sides of the long select gate, and a long select gate center portion is removed to form a left select gate and a right select gate with a gap therebetween. A drain is formed in the substrate underlying the gap, and a left and right source are formed in the substrate aligned with the left and right control gate.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: November 25, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Danny Pak-Chum Shum, Fook Hong Lee
  • Patent number: 8890294
    Abstract: To manufacture a stack semiconductor package, a board mold covers a first semiconductor. The board mold includes a first face and a second face opposite to the first face. An active surface of the first semiconductor faces the second face. A first opening is formed in the board mold from the second surface. The first opening is disposed on the first semiconductor. A second opening penetrates the board mold from the first surface. A conductive metal layer fills the first and the second openings using an electroless plating method. A plurality of semiconductor devices is stacked on the first face of the board mold.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Rae Cho, Tae-Hoon Kim, Ho-Geon Song, Seok-Won Lee
  • Patent number: 8889560
    Abstract: Methods of forming fine patterns for a semiconductor device include forming a hard mask layer on an etch target layer; forming a carbon containing layer on the hard mask layer; forming carbon containing layer patterns by etching the carbon containing layer; forming spacers covering opposing side walls of each of the carbon containing layer patterns; removing the carbon containing layer patterns; forming hard mask patterns by etching the hard mask layer using the spacers as a first etching mask; and etching the etch target layer by using the hard mask patterns a second etching mask.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-hong Chung, Cha-young Yoo, Dong-hyun Kim
  • Patent number: 8883527
    Abstract: The present invention discloses an OLED display panel which includes a first TFT array substrate, a first cover and a structural stiffening glue. A first frit and a second frit of the first cover have the structural stiffening glue provided at an outer side thereof, and the structural stiffening glue is in contact with the first TFT array substrate and the first cover. The present invention further discloses a method for manufacturing the OLED display panel. The present invention enables more solid and stable for a structure of the OLED display panel.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: November 11, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Tai-Pi Wu
  • Patent number: 8883581
    Abstract: A compound semiconductor device includes a compound semiconductor composite structure in which two-dimensional electron gas is generated; and an electrode that is formed on the compound semiconductor composite structure, wherein the compound semiconductor composite structure includes a p-type semiconductor layer below a portion where the two-dimensional electron gas is generated, and the p-type semiconductor layer includes a portion containing a larger amount of an ionized acceptor than other portions of the p-type semiconductor layer, the portion being located below the electrode.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 11, 2014
    Assignee: Transphorm Japan, Inc.
    Inventor: Toshihiro Ohki
  • Patent number: 8877582
    Abstract: One method herein includes forming a gate structure above an active area of a semiconductor substrate, forming sidewall spacer structures adjacent the gate structure, forming a masking layer that allows implantation of ions into the gate electrode but not into areas of the active region where source/drain regions for the transistor will be formed, performing a gate ion implantation process to form a gate ion implant region in the gate electrode and performing an anneal process. An N-type transistor including sidewall spacer structures positioned adjacent a gate structure, a plurality of source/drain regions for the transistor and a gate implant region positioned in a gate electrode, wherein the gate implant region is comprised of ions of phosphorous, arsenic or an implant material with an atomic size that is equal to or greater than the atomic size of phosphorous at a concentration level that falls within the range of 5e18-5e21 ions/cm3.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 4, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ralf Richter, Peter Javorka, Stefan Flachowsky, Nicolas Sassiat
  • Patent number: 8865580
    Abstract: According to one embodiment, a pattern forming method is disclosed. A resist pattern having a top surface is formed pattern on a substrate. A coating film having a first thickness distribution is formed on the substrate. The coating film covers the resist pattern. The coating film is thinned to expose the top surface of the resist pattern. The first thickness distribution is changed into a second thickness distribution which is more uniform than the first thickness distribution. The resist pattern is removed without removing the coating film. A pattern is formed in the substrate by processing the substrate by using the coating film as a mask.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: October 21, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsutoshi Kobayashi, Daisuke Kawamura
  • Patent number: 8865527
    Abstract: Various methods of attaching a lid to an integrated circuit substrate are provided. In one aspect, a method of attaching a lid to a substrate that has an integrated circuit positioned thereon is provided. An adhesive is applied to the substrate and an indium film is applied to the integrated circuit. The lid is positioned on the adhesive. The adhesive is partially hardened and the indium film is reflowed. The adhesive is cured.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: October 21, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Seah Sun Too, Maxat Touzelbaev, Janet Kirkland
  • Patent number: 8859405
    Abstract: A method for fabricating high efficiency CIGS solar cells including the deposition of Ga concentrations (Ga/(Ga+In)=0.25?0.66) from sputtering targets containing Ga concentrations between about 25 atomic % and about 66 atomic %. Further, the method includes a high temperature selenization process integrated with a high temperature anneal process that results in high efficiency.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: October 14, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Haifan Liang, Sang Lee, Wei Liu, Sandeep Nijhawan, Jeroen Van Duren
  • Patent number: 8859406
    Abstract: A method for fabricating high efficiency CIGS solar cells including the deposition of Ga concentrations (Ga/(Ga+In)=0.25-0.66) from sputtering targets containing Ga concentrations between about 25 atomic % and about 66 atomic %. Further, the method includes a high temperature selenization process integrated with a high temperature anneal process that results in high efficiency.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: October 14, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Haifan Liang, Sang Lee, Wei Liu, Sandeep Nijhawan, Jeroen Van Duren
  • Patent number: 8860074
    Abstract: Disclosed is a light emitting device. The light emitting device includes a substrate including a plurality of lead electrodes; a mold member including a cavity on the substrate; a light emitting chip in the cavity and on at least one of the lead electrodes; a connecting member for electrically connecting at least one of the lead electrodes to the light emitting chip; a resin member in the cavity; a spacer part between the lead electrodes, the spacer part including a material different from materials of the mold member and the resin member; and an adhesive film between the mold member and the substrate.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 14, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Dong Yong Lee
  • Patent number: 8860144
    Abstract: In general, according to one embodiment, a power semiconductor device includes a first pillar region, a second pillar region, and an epitaxial layer of a first conductivity type on a first semiconductor layer. The first pillar region is composed of a plurality of first pillar layers of a second conductivity type and a plurality of second pillar layers of the first conductivity type alternately arranged along a first direction. The second pillar region is adjacent to the first pillar region along the first direction and includes a third pillar layer of the second conductivity type, a fourth pillar layer of the first conductivity type, and a fifth pillar layer of the second conductivity type in this order along the first direction. A plurality of second base layers of the second conductivity type electrically connected, respectively, onto the third pillar layer and the fifth pillar layer and spaced from each other.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Ohta, Yasuto Sumi, Kiyoshi Kimura, Junji Suzuki, Hiroyuki Irifune, Wataru Saito, Syotaro Ono