Patents Examined by H. Jey Tsai
  • Patent number: 7659567
    Abstract: In a semiconductor device, a semiconductor substrate is sectioned into a logic-circuit formation section in which a plurality of logic circuits are formed, and a memory formation section in which a plurality of memory cells are formed. A multi-layered insulating layer is formed on the substrate, and a conductive structure is formed in the insulating layer at the logic-circuit formation section. Capacitors are formed in the insulating layer at the memory formation section. Each of the capacitors includes a lower capacitor electrode, a capacitor dielectric layer formed on the lower capacitor electrode, and an upper capacitor electrode formed on the capacitor dielectric layer, with upper is end faces of the upper capacitor electrodes being coplanar with an upper end face of the conductive structure. Bit-line layers are formed in the insulating layer below the lower capacitor electrodes at the memory formation section.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: February 9, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Yasuyuki Aoki
  • Patent number: 7655486
    Abstract: A method of making an LED light emitting device is disclosed. The method includes forming a multilayer encapsulant in contact with an LED by contacting the LED with a first encapsulant that is a silicone gel, silicone gum, silicone fluid, organosiloxane, polysiloxane, polyimide, polyphosphazene, sol-gel composition, or a first photopolymerizable composition, and then contacting the first encapsulant with a second photopolymerizable composition. Each photopolymerizable composition includes a silicon-containing resin and a metal-containing catalyst, the silicon-containing resin comprising silicon-bonded hydrogen and aliphatic unsaturation. Actinic radiation having a wavelength of 700 nm or less is applied to initiate hydrosilylation within the silicon-containing resins.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 2, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: D. Scott Thompson, Larry D. Boardman, Catherine A. Leatherdale
  • Patent number: 7651877
    Abstract: The present invention provides a two-dimensional image detecting apparatus including a mold structure which apparatus can be applied to mammography, and a manufacturing method thereof. The manufacturing method includes: a conversion layer formation step of forming a conversion layer (3) on an active matrix substrate (2); a counter substrate formation step of disposing a spacer material (5) and disposing the counter substrate (6) so as to be opposite to the active matrix substrate (2) via the spacer material (5); a mold resin layer formation step of forming a mold structure layer (8) in a space surrounded by the conversion layer (3), the spacer material (5), and the counter substrate (6); and a cutting step of cutting at least the active matrix substrate (2) so that cut surfaces of the constituent members are flush with each other; and a sealing step of securing a sealing material (7) to the cut surface.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: January 26, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yoshihiro Izumi
  • Patent number: 7642171
    Abstract: A method of annealing a substrate comprising a trench containing a dielectric material, the method including annealing the substrate at a first temperature of about 200° C. to about 800° C. in a first atmosphere comprising an oxygen containing gas, and annealing the substrate at a second temperature of about 800° C. to about 1400° C. in a second atmosphere lacking oxygen. In addition, a method of annealing a substrate comprising a trench containing a dielectric material, the method including annealing the substrate at a first temperature of about 400° C. to about 800° C. in the presence of an oxygen containing gas, purging the oxygen containing gas away from the substrate, and raising the substrate to a second temperature from about 900° C. to about 1100° C. to further anneal the substrate in an atmosphere that lacks oxygen.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: January 5, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Zheng Yuan, Vikash Banthia, Xinyun Xia, Hali J. L. Forstner, Rong Pan
  • Patent number: 7642146
    Abstract: The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An I/O dielectric layer is formed in core and I/O regions of a semiconductor device (506). The I/O dielectric layer is removed (508) from the core region of the device. A core dielectric layer is formed in the core region (510). A barrier layer is deposited and patterned to expose the NMOS devices of the core region (512). The core dielectric layer is removed from the core NMOS devices (514). A high-k dielectric layer is formed (514) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions/devices of the core region and the NMOS and PMOS regions/devices of the I/O region.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: January 5, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Mark Robert Visokay, Luigi Colombo
  • Patent number: 7622357
    Abstract: The present invention relates to a device structure that comprises a substrate with front and back surfaces, and at least one semiconductor device with a first conductive structure located in the substrate and a second conductive structure located thereover. A first conductive contact is located over the front surface of the substrate and laterally offset from the first conductive structure. The first conductive contact is electrically connected to the first conductive structure by a conductive path that extends: (1) from the first conductive structure through the substrate to the back surface, (2) across the back surface, and (3) from the back surface through the substrate to the first conductive contact on the front surface. Further, a second conductive contact is located over the front surface and is electrically connected to the second conductive structure. The conductive path can be formed by lithography and etching followed by metal deposition.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: November 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kunal Vaed, Jae-Sung Rieh, Richard P. Volant, Francois Pagette
  • Patent number: 7618855
    Abstract: A technology capable of improving the yield in a manufacturing process of a MISFET with a gate electrode formed of a metal silicide film. A gate insulating film is formed on a semiconductor substrate and silicon gate electrodes formed of a polysilicon film are formed on the gate insulating film. Then, after a silicon oxide film is formed so as to cover the silicon gate electrodes, a surface of the silicon oxide film is polished by CMP, thereby exposing the surface of the silicon gate electrodes. Subsequently, a patterned insulating film is formed on the silicon oxide film. Thereafter, an adhesion film is formed on the silicon oxide film and the insulating film. Then, a nickel film is formed on the adhesion film. Thereafter, a silicide reaction is caused to occur between the silicon gate electrode and the nickel film via the adhesion film.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: November 17, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Masaru Kadoshima, Toshihide Nabatame
  • Patent number: 7588990
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber and furnishing a hydrocarbon process gas into the chamber, preferably propylene (C3H6) or toluene (C7H8) or acetylene (C2H2) or a mixture of acetylene and methane (C2H4). The process further includes inductively coupling RF plasma source power into the chamber while and applying RF plasma bias power to the wafer. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired stress (compressive or tensile). We have discovered that at a wafer temperature less than or equal to 475 degrees C.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 15, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Patent number: 7588982
    Abstract: Some embodiments include methods of forming flash memory cells and semiconductor constructions, and some embodiments include semiconductor constructions. Some embodiments may include a method in which a semiconductor substrate is provided to have a plurality of active area locations. Floating gates are formed over the active area locations, with the floating gates having widths that are entirely sub-lithographic. Adjacent floating gates are spaced from one another by gaps. Dielectric material and control gate material are formed over the floating gates and within the gaps. Some embodiments may include a construction in which a pair of adjacent floating gates are over a pair of adjacent active areas, with the floating gates being spaced from one another by a distance which is greater than a distance that the active areas are spaced from one another.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: September 15, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Kirk D. Prall
  • Patent number: 7582534
    Abstract: A method is provided for doping nano-components, including nanotubes, nanocrystals and nanowires, by exposing the nano-components to an organic amine-containing dopant. A method is also provided for forming a field effect transistor comprising a nano-component that has been doped using such a dopant.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: September 1, 2009
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Phaedon Avouris, Jia Chen, Christian Klinke, Christopher B. Murray, Dmitri V. Talapin
  • Patent number: 7579230
    Abstract: A high voltage BICMOS device and a method for manufacturing the same, which may improve the reliability of the device by securing a distance between adjacent DUF regions, are provided. The high voltage BICOMOS device includes: a reverse diffusion under field (DUF) region formed by patterning a predetermined region of a semiconductor substrate; a diffusion under field (DUF) region formed in the substrate adjacent to the reverse DUF region; a spacer formed at a sidewall of the reverse DUF region; an epitaxial layer formed on an entire surface of the substrate; and a well region formed in contact with the DUF region.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 25, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwang Young Ko
  • Patent number: 7576350
    Abstract: An electrically programmable memory element comprising a programmable resistance material and an electrical contact. The electrical contact having at least two portion wherein the first portion has a higher resistivity than the second portion.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: August 18, 2009
    Assignee: Ovonyx, Inc.
    Inventors: Tyler Lowrey, Stephen J. Hudgens, Patrick J. Klersy
  • Patent number: 7576000
    Abstract: A method forms a first active electronic layer, prints an array of pillars on the first active electronic layer, dispenses a curable polymer over the array of pillars, molds the curable polymer by contacting the curable polymer with a mold structure to displace the curable polymer from upper surfaces of the pillars, cures the curable polymer to produce a hardened polymer, and removes the array of pillars to leave an array of holes in the hardened polymer. Another method provides a substrate having selected areas, prints an array of pillars on the substrate, dispenses a curable polymer over the array of pillars, molds the curable polymer by contacting the array of pillars with a mold structure to displace the curable polymer from upper surfaces of the pillars, cures the curable polymer to produce a hardened polymer, and removes the array of pillars to leave an array of holes in the hardened polymer corresponding to the selected areas.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 18, 2009
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Jurgen H. Daniel, Ana C. Arias
  • Patent number: 7550346
    Abstract: Disclosed is a method for forming a gate dielectric in a semiconductor device. The present method includes forming a first dielectric layer on a semiconductor substrate; removing a portion of the first dielectric layer to expose a portion of the substrate; forming a nitride layer on the exposed portion of the substrate and the first dielectric layer; forming a transition metal layer on the nitride layer; and oxidizing the transition metal layer to form a transition metal oxide layer.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: June 23, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jeong Ho Park
  • Patent number: 7541276
    Abstract: Exemplary embodiments of the invention generally include methods for forming multilayer metal interconnect structures using dual damascene methods that incorporate a via capping process to protect lower interconnection lines from etching damage or oxidation, for example, that may be caused by inadvertent exposure of lower interconnection lines to etching atmospheres.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: June 2, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae Hak Kim, Sun Jung Lee, Seung Jin Lee
  • Patent number: 7534680
    Abstract: Provided are bipolar transistor, BiCMOS device and method of fabricating thereof, in which an existing sub-collector disposed beneath a collector of a SiGe HBT is removed and a collector plug disposed at a lateral side of the collector is approached to a base when fabricating a Si-based very high-speed device, whereby it is possible to fabricate the SiGe HBT and an SOI CMOS on a single substrate, reduce the size of the device and the number of masks to be used, and implement the device of high density, low power consumption, and wideband performance.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: May 19, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Yeong Kang, Seung Yun Lee, Kyoung Ik Cho
  • Patent number: 7531407
    Abstract: Methods are provided for fabricating semiconductor IC (integrated circuit) chips having high-Q on-chip inductors formed on the chip backside and connected to integrated circuits on the chip frontside using through-wafer interconnects. For example, a semiconductor device with a backside integrated inductor includes a semiconductor substrate having a frontside, a backside and a buried insulating layer interposed between the front and backsides of the substrate. An integrated circuit is formed on the frontside of the semiconductor substrate and an integrated inductor is formed on the backside of the semiconductor substrate. An interconnection structure is formed through the buried insulating layer to connect the integrated inductor to the integrated circuit. The semiconductor substrate may be an SOI (silicon on insulator) structure.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: May 12, 2009
    Assignee: International Business Machines Corporation
    Inventors: Lawrence Clevenger, Timothy Joseph Dalton, Louis Hsu, Carl Radens, Vidhya Ramachandran, Keith Kwong Hon Wong, Chih-Chao Yang
  • Patent number: 7531401
    Abstract: An improved method for applying stress proximity technique process on a semiconductor device and the improved device is disclosed. In one embodiment, the method utilizes an additional set of sidewall spacers on one or more NFET devices during the fabrication process. This protects the one or more of the NFET devices during the activation of a compressive PFET stress liner, thereby reducing the compressive forces on the one or more NFET devices, and creating a semiconductor device with improved performance.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: May 12, 2009
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing, Ltd., Samsung Electronics Co., Ltd.
    Inventors: Christopher Vincent Baiocco, Xiangdong Chen, Wenzhi Gao, Young Gun Ko, Young Way Teh
  • Patent number: 7528030
    Abstract: A semiconductor device includes at least one MOS transistor, each transistor being provided with a source region and a drain region formed in a semiconductor substrate, along with a gate region and spacers. The transistor is covered with a unitary etch stop layer that includes at least a first zone having a first residual stress level (in tension) covering at least one part of the transistor and at least a second zone having a second residual stress level (in compression) covering at least another part of the device. With this configuration, the first residual stress level is higher than the second residual stress level.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: May 5, 2009
    Assignees: STMicroelectronics (Crolles 2) SAS, Commissariat a l'Energie Atomique
    Inventors: Pierre Morin, Catherine Chaton
  • Patent number: 7528035
    Abstract: A method of forming a vertical transistor trench memory cell having an insulating ring is provided. The method includes forming a semiconductor material region in an etched portion of a semiconductor substrate; partially etching the semiconductor material region to form a deep trench, where the deep trench extends beyond the semiconductor material region, and where the remaining of the partially etched semiconductor material region defines an insulating ring. A vertical transistor is then formed in the deep trench, such that the vertical transistor is isolated by the insulating ring. A semiconductor structure is also provided. The semiconductor structure includes a first and a second trench memory cells formed on a semiconductor substrate; and an insulating ring surrounding each of the first and second trench memory cells. The insulating ring is configured for significantly enclosing out diffusions from the trench memory cells.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng