Patents Examined by H. Jey Tsai
  • Patent number: 7517796
    Abstract: The present invention provides for a method to pattern and etch very small dimension pillars, for example in a memory array. When dimensions of pillars become very small, the photoresist pillars used to pattern them may not have sufficient mechanical strength to survive the photoresist exposure and development process. Using methods according to the present invention, these photoresist pillars are printed and developed larger than their intended final dimension, such that they have increased mechanical strength, then are shrunk to the desired dimension during a preliminary etch performed before the etch of underlying material begins.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: April 14, 2009
    Assignee: Sandisk 3D LLC
    Inventors: Usha Raghuram, Michael W. Konevecki
  • Patent number: 7517751
    Abstract: A substrate processing method includes the step of forming an oxide film by oxidizing a silicon substrate surface and the step of nitriding the oxide film to form an oxynitride film, wherein there is provided a step of purging oxygen after the oxidizing step but before said nitriding step from an ambient in which said nitriding processing is conducted.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: April 14, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Takuya Sugawara, Seiji Matsuyama, Masaru Sasaki
  • Patent number: 7514272
    Abstract: A method of manufacturing a ferroelectric memory device includes: forming an active element on a substrate; forming an interlayer insulating layer on the substrate; forming an opening on the interlayer insulating layer and forming a contact plug inside the opening; forming a foundation layer above the substrate; and laminating, on the foundation layer, a first electrode, a ferroelectric layer, and a second electrode. In this method, the forming of the foundation layer includes: forming a first titanium layer having a thickness less than a depth of a recess; nitriding the first titanium layer into a first titanium nitride layer; forming a second titanium layer on the first titanium nitride layer so as to at least partially fill the recess remaining on the contact plug; nitriding the second titanium layer into a second titanium nitride layer, and polishing a surface of the second titanium nitride layer.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: April 7, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Shinichi Fukada, Hiroyuki Mitsui
  • Patent number: 7514738
    Abstract: A nonvolatile semiconductor memory has a memory cell structure with a doped semiconductor substrate, a gate electrode, a channel area disposed in the substrate below the gate electrode, a pair of variable resistance areas disposed on opposite sides of the channel area in the substrate, charge storage bodies formed above the variable resistance areas and on the sides of the gate electrode, and highly doped source and drain areas formed on opposite sides of the variable resistance areas in the substrate. The variable resistance areas are doped at a carrier concentration of 5×1017 cm?3 or less to ensure an adequate current difference between the programmed and erased states of the memory cell. The doping of the variable resistance areas differs from the lightly doped drain doping in peripheral circuit areas.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: April 7, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Takashi Ono, Narihisa Fujii, Kenji Ohnuki
  • Patent number: 7514320
    Abstract: A semiconductor device of the present invention comprises a memory cell area having memory cells arranged in an array form, each of which includes a capacitor for storing data and a peripheral circuit area for accessing the memory cell area. The peripheral circuit area is provided with a plurality of wiring layers and each of the memory cells has a capacitor. The capacitor is comprised of a plate electrode, a capacitive insulating film formed on a side wall of an opening formed through the plate electrode, and a storage electrode embedded in the opening in which the capacitive insulating film is formed on the side wall, such that the plate electrodes, the capacitive insulating films, and the storage electrodes of the memory cells are arranged in correspondence to the plurality of wiring layers, and the storage electrodes are connected to one another.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: April 7, 2009
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroyuki Uchiyama
  • Patent number: 7510942
    Abstract: A method of increasing the work function of micro-electrodes includes providing a metal or silica surface functionalized with reactive groups and contacting the functionalized surface with a solution of at least one biochemical, having a permanent dipole moment and being capable of self assembly, for a sufficient time for the biochemical to self assemble molecularly (SAM) on the functionalized surface. The biochemical can be aminopropyl triethoxy silane, fatty acids, organosilicon derivatives, organosulfur compounds, alkyl chains, or diphosphates. Use in a wide variety of metals and metallic compounds is disclosed.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: March 31, 2009
    Assignee: Arizona Board of Regents, Acting for and on behalf of Arizona State University
    Inventors: Sandwip K. Dey, Diefeng Gu, Rizaldi Sistiabudi, Jaydeb Goswami
  • Patent number: 7510928
    Abstract: A portion of a conductive layer (310, 910) provides a capacitor electrode (310.0, 910.0). Dielectric trenches (410, 414, 510) are formed in the conductive layer to insulate the capacitor electrode from those portions of the conductive layer which are used for conductive paths passing through the electrode but insulated from the electrode. Capacitor dielectric (320) can be formed by anodizing tantalum while a nickel layer (314) protects an underlying copper (310) from the anodizing solution. This protection allows the tantalum layer to be made thin to obtain large capacitance. Chemical mechanical polishing of a layer (610) is made faster, and hence possibly less expensive, by first patterning the layer photolithographically to form, and/or increase in height, upward protrusions of this layer.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: March 31, 2009
    Assignee: Tru-Si Technologies, Inc.
    Inventors: Sergey Savastiouk, Valentin Kosenko, James J. Roman
  • Patent number: 7507620
    Abstract: A vertical diode of low capacitance formed in a front surface of a semiconductor substrate, including a first area protruding from the substrate surface including at least one doped semiconductor layer of a conductivity type opposite to that of the substrate, the upper surface of the semiconductor layer supporting a first welding ball. The diode includes a second area including on the substrate a thick conductive track supporting at least two second welding balls, said first and second welding balls defining a plane parallel to the substrate plane.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: March 24, 2009
    Assignee: STMicroelectronics S.A.
    Inventors: Emmanuel Collard, Patrick Poveda
  • Patent number: 7498179
    Abstract: The present invention relates to the field of a semiconductor device having a ferroelectric material capacitor and method of making the same. The semiconductor device includes a capacitor having a triple-level oxygen barrier layer pattern formed by an oxygen barrier metal layer, a material layer formed of a conductive solid solution by compounding the oxygen barrier metal layer and oxygen, and an oxygen barrier metal on an interlayer dielectric with a contact plug. The capacitor also has an electrode and a ferroelectric film electrically contacting to the oxygen barrier layer. Further, a wetting layer is formed between the oxygen barrier layer and the contact plug, and an iridium oxygen layer is formed between the oxygen barrier layer and a capacitor electrode.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: March 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yoon-Jong Song
  • Patent number: 7491975
    Abstract: A light-emitting device includes an element array portion and an auxiliary interconnect. The element array portion includes a plurality of element groups. Each element group includes a plurality of light-emitting elements arranged in a first direction. Each light-emitting element has a structure such that a light-emitting layer lies between a first electrode and a second electrode. The element groups are arranged in a second direction perpendicular to the first direction. The auxiliary interconnect is formed of a material having a resistivity lower than the resistivity of the second electrode and is electrically connected to the second electrode of each light-emitting element. The plurality of element groups include a first element group and a second element group adjacent to each other and a third element group adjacent to the opposite side of the second element group from the first element group.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: February 17, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Takehiko Kubota
  • Patent number: 7488661
    Abstract: A device and method for improving adhesion for thin film layers includes applying a diblock copolymer on a surface where adhesion to subsequent layers is needed and curing the diblock copolymer. Pores are formed in the diblock copolymer by treating the diblock copolymer with a solvent. The surface is etched through the pores of the diblock copolymer to form adhesion promoting features. The diblock copolymer is removed, and a layer is deposited on the surface wherein the adhesion promoting features are employed to promote adhesion between the layer and the surface.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: February 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Keith Raymond Milkove, Michael Christopher Gaidis
  • Patent number: 7488614
    Abstract: In one embodiment, an electrode is disposed on a surface of a first portion of the dielectric, with the first portion and the electrode forming an electrode region of the device. A charge-dissipation structure is then formed by implanting ions into the electrode region and a second portion of the dielectric located outside of the electrode region. In another embodiment, a charge-dissipation structure is formed by implanting ions into the dielectric of a movable part of an electro-mechanical system. Advantageously, ion implantation can be performed without masking, lithography, or elevated temperatures; the electrical properties of the resulting charge dissipation structure can be controlled relatively easily; and portions of the charge dissipation structure are protected from oxidation and/or corrosion by the dielectric material.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: February 10, 2009
    Assignees: Alcatel-Lucent USA Inc., Agere Systems Inc.
    Inventors: Susanne Arney, Arman Gasparyan, Sungho Jin, Omar D. López, Herbert R. Shea
  • Patent number: 7482693
    Abstract: A method of closely interconnecting integrated circuits contained within a semiconductor wafer to electrical circuits surrounding the semiconductor wafer. Electrical interconnects are held to a minimum in length by making efficient use of polyimide or polymer as an inter-metal dielectric thus enabling the integration of very small integrated circuits within a larger circuit environment at a minimum cost in electrical circuit performance.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: January 27, 2009
    Inventor: Mou-Shiung Lin
  • Patent number: 7470551
    Abstract: A spin transistor and a manufacturing method thereof are provided. The method includes defining a required area on a substrate by lithography; forming a doping area by ion-implantation, and forming a magnetoresistive film on the substrate. Finally, the method produces a spin transistor with the emitter, the base, and the collector in the same plane surface. The manufacturing method integrates the emitter, the base, and the collector into one plane, so that miniaturization of the spin transistor is achieved, and it is advantageous for the integration and subsequent packaging of the spin transistor and integrated circuit elements.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: December 30, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Ying-Wen Huang, Chi-Kuen Lo, Lan-Chin Hsieh, Der-Ray Huang, Yeong-Der Yao, Jau-Jiu Ju
  • Patent number: 7465589
    Abstract: A multi-state magnetoresistive random access memory device having a pinned ferromagnetic region with a magnetic moment vector fixed in a preferred direction in the absence of an applied magnetic field, a non-ferromagnetic spacer layer positioned on the pinned ferromagnetic region, and a free ferromagnetic region with an anisotropy designed to provide a free magnetic moment vector within the free ferromagnetic region with N stable positions, wherein N is a whole number greater than two, positioned on the non-ferromagnetic spacer layer. The number N of stable positions can be induced by a shape anisotropy of the free ferromagnetic region wherein each N stable position has a unique resistance value.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: December 16, 2008
    Assignee: EverSpin Technologies, Inc.
    Inventors: Jon M. Slaughter, Anatoli A. Korkin, legal representative, Herbert Goronkin, Leonid Savtchenko
  • Patent number: 7459368
    Abstract: Method for manufacturing integrated circuits having silicon-germanium heterobipolar transistors, wherein a collector semiconductor region is created, an etch stop layer is created on a connection region, an opening is introduced into this etch stop layer, semiconductor material, which is formed as a single crystal at least in the collector semiconductor region above the opening, is applied over the etch stop layer and over the opening. Before etching of the semiconductor material, a masking layer is applied above the collector semiconductor region to the semiconductor material, which protects the collector semiconductor region from the etching. Afterwards the semiconductor material is etched to the depth of the etch stop layer, the etch stop layer acting as an etch stop such that reaching an interface between the semiconductor material and the etch stop layer is detected during the etching and the etching is stopped depending on the detection.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: December 2, 2008
    Assignee: Atmel Germany GmbH
    Inventor: Peter Brandl
  • Patent number: 7456074
    Abstract: A method for increasing an electrical resistance of a resistor, by nitridizing a fraction of a surface layer of the resistor with nitrogen particles. An embodiment comprises heating the fraction of the surface layer by a beam of radiation or particles, such that the resistor is within a chamber that includes the nitrogen-comprising molecules. An embodiment comprises using an anodization circuit to electrolytically generate nitrogen ions in an electrolytic solution in which the resistor is immersed, wherein the nitrogen particles include the electrolytically-generated nitrogen ions. An embodiment comprises immersing the resistor in a chemical solution which includes the nitrogen particles, wherein the nitrogen particles may include nitrogen-comprising liquid molecules, nitrogen ions, or a nitrogen-comprising gas dissolved in the chemical solution under pressurization.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: November 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Daniel C. Edelstein, Anthony K. Stamper
  • Patent number: 7456061
    Abstract: The invention, in one aspect, provides a method of manufacturing a semiconductor device. This aspect includes forming gate electrodes in a non-bipolar transistor region of a semiconductor substrate, placing a polysilicon layer over the gate electrodes in the non-bipolar transistor region and over the semiconductor substrate within a bipolar transistor region. A protective layer is formed over the polysilicon layer. The protective layer has a weight percent of hydrogen that is less than about 9% and is selective to silicon germanium (SiGe), such that SiGe does not form on the protective layer. This aspect further includes forming emitters for bipolar transistors in the bipolar transistor region, including forming a SiGe layer under a portion of the polysilicon layer.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 25, 2008
    Assignee: Agere Systems Inc.
    Inventors: Alan S. Chen, Mark Dyson, Nace M. Rossi, Ranbir Singh, Xiaojun Yuan
  • Patent number: 7452769
    Abstract: In a semiconductor device according to embodiments of the invention, a capacitor includes a storage electrode having a cylindrical storage conductive layer pattern and connecting members formed on the upper portion of the cylindrical storage conductive layer pattern. The connecting member connects to an adjacent connecting member of another storage electrode. A dielectric layer and a plate electrode are successively formed on the storage electrode. All of the capacitors are connected by one another by forming cylindrical storage electrodes so that the storage electrode does not fall down when the capacitors have an extremely large aspect ratio. Thus, the capacitance of the capacitors may be improved to the desired level. A semiconductor device that includes these capacitors may have improved reliability and the throughput of a semiconductor manufacturing process may be increased.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: November 18, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Je-Min Park
  • Patent number: 7453142
    Abstract: A transformer system includes a package substrate having a surface. A plurality of electrically conductive pads are arranged in spaced apart relationship relative to each other on the substrate surface. A first winding is defined by a first electrically conductive path between a first input and a first output, the first electrically conductive path including at least one wire connected between at least one first pad pair of the electrically conductive pads. At least one electrically conductive pad of each first pad pair is at the substrate surface. A second winding is defined by a second electrically conductive path between a second input and a second output, the second electrically conductive path including at least one wire connected between at least one second pad pair of the electrically conductive pads. At least one electrically conductive pad of each second pad pair is at the substrate surface.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: November 18, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: See Taur Lee, Solti Peng, Dirk Leipold, James Fred Salzman