Patents Examined by Herve Assouman
  • Patent number: 9981471
    Abstract: The present disclosure relates to a method for the application of an antiwetting coating on at least one surface of a substrate of semiconductor material comprising the steps of: a) applying on said at least one surface a metal layer of a material chosen in the group constituted by noble metals, coining metals, their oxides and their alloys; and b) applying on said metal layer a layer of a thiol of formula R—SH, where R is a linear alkyl chain having from 3 to 20 carbon atoms and, optionally, at least one hetero-atom, for obtaining an antiwetting coating. The disclosure further regards a method for the production of a nozzle plate for ink-jet printing and to an integrated ink-jet printhead provided with a nozzle plate obtained according to the method of the disclosure.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 29, 2018
    Assignee: STMicroelectronics S.R.L.
    Inventor: Fabrizio Porro
  • Patent number: 9985190
    Abstract: Embodiments are related to systems and methods for fluidic assembly, and more particularly to diodes offering orientation control properties in a fluidic assembly system.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: May 29, 2018
    Assignee: eLux Inc.
    Inventors: Changqing Zhan, Mark Albert Crowder, Paul John Schuele
  • Patent number: 9966336
    Abstract: A device includes a first low-k dielectric layer, and a copper-containing via in the first low-k dielectric layer. The device further includes a second low-k dielectric layer over the first low-k dielectric layer, and an aluminum-containing metal line over and electrically coupled to the copper-containing via. The aluminum-containing metal line is in the second low-k dielectric layer.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: May 8, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Tien-I Bao
  • Patent number: 9960121
    Abstract: In accordance with the present invention, there is provided a semiconductor device comprising a semiconductor die or chip, a package body and a through package body via. The semiconductor chip includes a plurality of conductive pads. The package body encapsulates a sidewall of the semiconductor chip, and has at least one hole formed therein having a sidewall which is of a prescribed first surface roughness value. The through package body via is disposed in the hole of the package body and comprises a dielectric material and at least one conductive interconnection metal. The dielectric material is disposed on the sidewall of the hole and defines at least one bore having a sidewall which is of a second surface roughness value less than the first surface roughness value. The interconnection metal is disposed within the bore.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: May 1, 2018
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Yung-Jen Chen, Yi-Chuan Ding, Min-Lung Huang
  • Patent number: 9953966
    Abstract: A semiconductor device having a semiconductor substrate is provided. The semiconductor substrate includes an integrated circuit, which includes multi-layer structured metallization and inter-metal dielectric. The integrated circuit is below a passivation, which is over a metal structure. The metal structure includes a metal pad and an under bumper metallurgy, which is over and aligned with the metal pad. The metal pad is electrically connected to the integrated circuit, and the under bumper metallurgy is configured to electrically connect to a conductive component of another semiconductor device. The integrated circuit further includes a conductive trace, which is below and aligned with the metal structure. The conductive trace is connected to a power source such that an electromagnetic field is generated at the conductive trace when an electric current from the power source passes through the conductive trace.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: April 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chia-Chun Miao, Shih-Wei Liang, Kai-Chiang Wu, Yen-Ping Wang
  • Patent number: 9952520
    Abstract: A method for aligning a semiconductor wafer is provided. The method includes providing the semiconductor wafer having two alignment marks formed on an active region or on an edge region of the semiconductor wafer. An included angle that is formed between the two alignment marks in a circumferential direction of the semiconductor wafer is between about 12 degrees and about 36 degrees. The method further includes receiving the detection signal reflected from at least one of the first alignment mark and the second alignment mark. The method also includes determining a parameter by a control system based on the received detection signal and moving the semiconductor wafer according to the parameter.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: April 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Shing-Kuei Lai, Wei-Yueh Tseng, Hsiao-Yi Wang, De-Fang Huang
  • Patent number: 9947686
    Abstract: A semiconductor device includes a substrate, a stack, and channel structures penetrating the stack. The stack includes gate electrodes and insulating layers alternately and repeatedly stacked on the substrate, and extending in a first direction. The channel structures in a first row are spaced apart from each other in the first direction. The stack includes a first sidewall that includes first recessed portions and first protruding portions. Each of first recessed portions is defined by an adjacent pair of the first recessed portions. Each of the first recessed portions has a shape recessed toward a first region of the stack between an adjacent pair of the channel structures of the first row. Each of the first recessed portions has a width that decreases in a direction toward the first region when measured along the first direction.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: April 17, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byoungkeun Son, Yoocheol Shin, Changhyun Lee, Hyunjung Kim, Chung-Il Hyun
  • Patent number: 9947710
    Abstract: A semiconductor device including a semiconductor layer that includes an active region, semiconductor elements that are formed using the active region, connection regions that are obtained by metalizing parts of the semiconductor layer in an island shape isolated from the active region, an insulation film that is formed to cover one main surface side of the semiconductor layer, electrodes that are disposed to face the semiconductor elements and the connection regions via the insulation film, and contacts that penetrate through the insulation film to be selectively formed in portions according to necessity among portions that connect the semiconductor elements or the connection regions to the electrodes.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: April 17, 2018
    Assignee: SONY CORPORATION
    Inventor: Takashi Yokoyama
  • Patent number: 9929132
    Abstract: A semiconductor device includes a substrate, a seed layer, a first patterned metal layer, a dielectric layer and a second metal layer. The seed layer is disposed on a surface of the substrate. The first patterned metal layer is disposed on the seed layer and has a first thickness. The first patterned metal layer includes a first part and a second part. The dielectric layer is disposed on the first part of the first patterned metal layer. The second metal layer is disposed on the dielectric layer and has a second thickness, where the first thickness is greater than the second thickness. The first part of the first patterned metal layer, the dielectric layer and the second metal layer form a capacitor. The first part of the first patterned metal layer is a lower electrode of the capacitor, and the second part of the first patterned metal layer is an inductor.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 27, 2018
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Teck-Chong Lee, Chien-Hua Chen, Yung-Shun Chang, Pao-Nan Lee
  • Patent number: 9893201
    Abstract: To provide an oxide semiconductor film having stable electric conductivity and a highly reliable semiconductor device having stable electric characteristics by using the oxide semiconductor film. The oxide semiconductor film contains indium (In), gallium (Ga), and zinc (Zn) and includes a c-axis-aligned crystalline region aligned in the direction parallel to a normal vector of a surface where the oxide semiconductor film is formed. Further, the composition of the c-axis-aligned crystalline region is represented by In1+?Ga1??O3(ZnO)m (0<?<1 and m=1 to 3 are satisfied), and the composition of the entire oxide semiconductor film including the c-axis-aligned crystalline region is represented by InxGayO3(ZnO)m (0<x<2, 0<y<2, and m=1 to 3 are satisfied).
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: February 13, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masahiro Takahashi, Kengo Akimoto, Shunpei Yamazaki
  • Patent number: 9876143
    Abstract: In an example, the present invention provides a light-emitting device configured to emit electromagnetic radiation in a range of 210 to 360 nanometers. The device has a substrate member comprising a surface region. The device has a thickness of AlGaN material formed overlying the surface region and an aluminum concentration characterizing the AlGaN material having a range of 0 to 100%. The device has a boron doping concentration characterizing the AlGaN material having a range between 1e15 to 1e20 atoms/centimeter3.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 23, 2018
    Assignee: RayVio Corporation
    Inventors: Yitao Liao, Douglas A. Collins, Wei Zhang
  • Patent number: 9875913
    Abstract: A method of packaging an integrated circuit includes forming a first integrated circuit and a second integrated circuit on a wafer, the first and second integrated circuit separated by a singulation region. The method includes covering the first and second integrated circuits with a molding compound, and sawing through a top portion of the molding compound using a first beveled saw blade, while leaving a bottom portion of the molding compound remaining. The method further includes sawing through the bottom portion of the molding compound and the wafer using a second saw blade, the second saw blade having a thickness that is less than a thickness of the first saw blade. The resulting structure is within the scope of the present disclosure.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: January 23, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Kai Liu, Yen-Ping Wang, Kai-Chiang Wu
  • Patent number: 9871004
    Abstract: Semiconductor chip laminates and inductive, capacitive, and electromagnetic shielding laminate structures that can be integrated together to form electronic circuits for use in systems and devices such as smartphones, tablet computers, notebook computers, wearable electronic devices, portable medical devices, servers, networking equipment, industrial equipment, etc. Fabrications of such integrated laminate structures can be modularized into four (4) types of laminates, namely, inductive laminates, capacitive laminates, electromagnetic shielding laminates, and semiconductor chip laminates, which can be vertically laminated together and/or integrated side-by-side with high density to produce the desired electronic circuits, systems, and devices.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: January 16, 2018
    Assignee: Suzhou Qing Xin Fang Electronics Technology Co., Ltd.
    Inventor: Jerry Zhijun Zhai
  • Patent number: 9865457
    Abstract: There is provided a method of forming a nitride film, including: repeating a cycle including an adsorption process of adsorbing a film forming precursor gas onto a substrate having a surface in which a fine recess is formed, the film forming precursor gas containing an element and chlorine constituting a nitride film to be formed; and a nitriding process of nitriding the adsorbed film forming precursor gas with nitriding active species, to form the nitride film in the fine recess. The nitriding process includes: generating NH* active species and N* active species as a nitriding active species; and controlling concentrations of the NH* active species and the N* active species to vary an area where the film forming precursor gas is adsorbed in the fine recess.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: January 9, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kazuhide Hasebe, Akira Shimizu
  • Patent number: 9859125
    Abstract: Methodologies and a device for SRAM patterning are provided. Embodiments include forming a spacer layer over a fin channel, the fin channel being formed in four different device regions; forming a bottom mandrel over the spacer layer; forming a top mandrel directly over the bottom mandrel, wherein the top and bottom mandrels including different materials; forming a buffer oxide layer over the top mandrel; forming an anti-reflective coating (ARC) over the first OPL; forming a photoresist (PR) over the ARC and patterning the PR; and etching the first OPL, ARC, buffer oxide, and top mandrel with the pattern of the PR, wherein a pitch of the PR as patterned is different in each of the four device regions.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: January 2, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Min Gyu Sung, Ruilong Xie, Chanro Park, Hoon Kim, Kwan-Yong Lim
  • Patent number: 9853081
    Abstract: A semiconductor device includes a first semiconductor layer; an insulation member layer formed on the first semiconductor layer; a transistor disposed in an upper portion of the insulation member layer; a first interlayer insulation film covering the transistor; a layered member including a wiring layer formed on the first interlayer insulation film and a second interlayer insulation film; and a first penetrating electrode penetrating through the insulation member layer, the first interlayer insulation film, and the layered member. The first penetrating electrode is electrically connected only to the first semiconductor layer.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: December 26, 2017
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Hiroki Kasai
  • Patent number: 9847296
    Abstract: A method for forming a multilayer barrier comprises forming a conductive line over a substrate, depositing a dielectric layer over the conductive line, forming a plug opening in the dielectric layer, forming a multilayer barrier through a plurality of deposition processes and corresponding plasma treatment processes.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: December 19, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chung Chang, Jung-Chih Tsao, Chun Che Lin, Yu-Ming Huang, Tain-Shang Chang, Jian-Shin Tsai
  • Patent number: 9837608
    Abstract: A mask assembly includes: a mask frame; and a mask sheet disposed on the mask frame, wherein the mask sheet is stretched by applying tensile force and affixed onto the mask frame, wherein the mask sheet includes a pattern including a plurality of openings, and wherein a thickness of the pattern is different from thicknesses of other portions of the mask sheet.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: December 5, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Youngmin Moon, Minho Moon, Sungsoon Im, Soonchul Chang, Kyuhwan Hwang
  • Patent number: 9831345
    Abstract: A method of forming a FinFET with a rounded source/drain profile comprises forming a fin in a substrate, etching a source/drain recess in the fin, forming a plurality of source/drain layers in the source/drain recess; and etching at least one of the plurality of source/drain layers. The source/drain layers may be a silicon germanium compound. Etching at the source/drain layers may comprises partially etching each of the plurality of source/drain layers prior to forming subsequent layers of the plurality of source/drain layers. The source/drain layers may be formed with a thickness at a top corner of about 15 nm, and the source/drain layers may each be etched back by about 3 nm prior to forming subsequent layers of the plurality of source/drain layers. Forming the plurality of source/drain layers optionally comprises forming at least five source/drain layers.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hua Yu, Chih-Pin Tsao, Pei-Ren Jeng, Tze-Liang Lee
  • Patent number: 9825055
    Abstract: Single gate and dual gate FinFET devices suitable for use in an SRAM memory array have respective fins, source regions, and drain regions that are formed from portions of a single, contiguous layer on the semiconductor substrate, so that STI is unnecessary. Pairs of FinFETs can be configured as dependent-gate devices wherein adjacent channels are controlled by a common gate, or as independent-gate devices wherein one channel is controlled by two gates. Metal interconnects coupling a plurality of the FinFET devices are made of a same material as the gate electrodes. Such structural and material commonalities help to reduce costs of manufacturing high-density memory arrays.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: November 21, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventor: John H. Zhang