Patents Examined by Hoa Q. Pham
  • Patent number: 10444360
    Abstract: A displacement measurement device and a measurement method are provided. A displacement measurement device includes a light projecting unit configured to generate a light beam; a sensor head configured to emit the light beam to a measurement target object and receive a light beam reflected at the measurement target surface within the emitted light beam; a storage unit configured to store a function using a distance between the sensor head and the measurement target surface as a variable; and a control unit configured to calculate the distance based on a wavelength of the light received by the sensor head. The control unit calculates a value of the function using a distance between the sensor head and the measurement target surface of the measurement target object as a value of the variable. The control unit corrects the calculated distance using the calculated value of the function.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: October 15, 2019
    Assignee: OMRON Corporation
    Inventors: Tomonori Kondo, Yuta Suzuki, Kenichi Matoba
  • Patent number: 10446423
    Abstract: Systems, apparatuses and methods for determining a surface profile of a substrate are provided. In one embodiment, a method includes projecting a signal having a vertical component/profile across the surface of the substrate from a plurality of locations along a first side of the substrate, capturing the projected signals at each of a plurality of respective locations across the surface of the substrate and determining a surface profile for the substrate using the captured signals. The process can be automated using a controller having predetermined projection and capture positions along respective sides of the substrate, where a surface profile of the substrate can be automatically determined by the controller using the captured signals.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: October 15, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jun-Liang Su, Karthik Elumalai, Eng Sheng Peh, Sriskantharajah Thirunavukarasu, Dimantha Rajapaksa
  • Patent number: 10444111
    Abstract: An optical apparatus includes a diffractive optical element (DOE), having at least one optical surface, a side surface, which is not parallel to the at least one optical surface of the DOE, and a grating, which is formed on the at least one optical surface so as to receive and diffract first radiation from a primary radiation source that is incident on the grating. The apparatus further includes at least one secondary radiation source, which is configured to direct second radiation to impinge on the side surface, causing at least part of the second radiation to propagate within the DOE while diffracting internally from the grating and to exit through the side surface. The apparatus also includes at least one radiation detector, which is positioned so as to receive and sense an intensity of the second radiation that has exited through the side surface.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: October 15, 2019
    Assignee: APPLE INC.
    Inventors: Brian S Medower, Meng Zhang
  • Patent number: 10436706
    Abstract: An information processing apparatus uses signals obtained by a plurality of reception units that receive an acoustic wave propagating from a point of interest to acquire object information at the point of interest. The apparatus includes a speed-of-sound acquisition unit that acquires information representing speed of sound on a propagation path of the acoustic wave, a correction unit that acquires a correction amount for the information representing speed of sound and corrects the information representing speed of sound using the correction amount, and an information acquisition unit that determines a propagation time of the acoustic wave by linearly approximating propagation paths from the point of interest to the reception units based on the corrected information and acquires the object information at the point of interest based on the signals and the propagation time.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: October 8, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Shoya Sasaki, Kenichi Nagae
  • Patent number: 10429298
    Abstract: Disclosed is a method for determining the reflectance of an object, the method including a step of solving an equation having several unknowns, the equation being obtained from formed images, the reflectance of the object and the illumination of the external light source being two unknowns of the equation. The step of solving the equation includes: calculating solution points of the equation, interpolating the calculated points by way of an interpolation function, and using at least one of the following approximations to solve the equation: a first approximation according to which each image is derived from the emission of a separate light flash, a second approximation according to which the interpolation function determines the stability points of the equation.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: October 1, 2019
    Assignee: COLOR GRAIL RESEARCH
    Inventors: Rémi Vauclin, Franck Hennebelle
  • Patent number: 10429308
    Abstract: A carrier for Raman spectroscopy comprising: a substrate having a first metal surface; a plurality of graphene islands disposed on the substrate, wherein parts of the neighboring graphene islands are not connected and thereby form a plurality of gaps between the graphene islands; and a plurality of second metal particles disposed at the gaps between the graphene islands.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 1, 2019
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Yon-Hua Tzeng, Ying-Ren Chen
  • Patent number: 10422633
    Abstract: The disclosure relates to a method and a determination device for determining a surface shape of an object. In order to build the determination device as compact as possible, according to the invention, the object is illuminated by an illuminating line and illuminating light reflected by the object is directed to a sensor line of the determination device.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 24, 2019
    Assignee: Jabil Optics Germany GmbH
    Inventor: Eberhard Piehler
  • Patent number: 10422627
    Abstract: Systems and methods that provide a framework for location tracking of a movable target component or device (e.g., an automated device or a hand-operated device) to accurately cover an area of interest along a specified path or in a specified region. Grid patterns are projected onto a surface of a workpiece or a part. The projected grid lines may be straight or curved. Straight grid lines can be parallel or intersecting. The grid pattern may include a path to be followed. The lines of the projected grid pattern are detected by a grid detection sensor which is mounted onboard the movable target component or device. Information from the grid detection sensor is fed to a location mapping program. The systems and methods also enable navigation for use in automated and autonomous manufacturing and maintenance operations, as well as other tracking-based applications.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 24, 2019
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, James J. Troy, Scott W. Lea
  • Patent number: 10416086
    Abstract: The invention alleviates a burden on a user relating to an image inspection device based on photometric stereo and multi-spectral imaging. An illumination device 3 has three or more illumination blocks that irradiate a workpiece 2 with illumination beams from different directions, respectively. A camera 4 generates images of the workpiece 2. An image processing device 5 irradiates the workpieces 2 sequentially with illumination beams from light emitting elements of different lighting colors and generates a plurality of spectral images. The image processing device 5 sequentially turns on the three or more illumination blocks in units of blocks and generates a plurality of direction images. The image processing device 5 generates a color inspection image based on the plurality of spectral images and executes color inspection. The image processing device 5 generates a shape inspection image based on the plurality of direction images and executes shape inspection.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: September 17, 2019
    Assignee: Keyence Corporation
    Inventor: Manabu Kido
  • Patent number: 10416092
    Abstract: Methods and apparatus for detecting the presence or absence of unwanted metal deposits on a substrate holder of an electroplating apparatus are described herein. In various embodiments, a plating sensor is used to detect unwanted metal deposits. The plating sensor may be mounted relatively far away from the area that it measures (e.g., the sensor target area). For instance, the plating sensor may be on one side of the electroplating apparatus (in some cases mounted on a drip shield), and the sensor target area may be on the opposite side of the electroplating apparatus. In this way, the plating sensor can measure across the electroplating apparatus. This placement provides a relatively deep depth of focus for the plating sensor, and provides some physical separation between the plating sensor and the electroplating chemistry. Both of these factors lead to more reliable detection results.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: September 17, 2019
    Assignee: Lam Research Corporation
    Inventors: Rajan Arora, Jared Herr, Jason Daniel Marchetti, Steven T. Mayer, James R. Zibrida
  • Patent number: 10408729
    Abstract: A nephelometric turbidimeter for measuring a turbidity of a liquid sample in a transparent sample cuvette. The nephelometric turbidimeter includes a cuvette chamber housing with a cuvette chamber having the transparent sample cuvette arranged therein, and a drying apparatus. The drying apparatus includes a cuvette chamber inlet opening which vents the cuvette chamber, a cuvette chamber outlet opening which de-vents the cuvette chamber, an air circulator which circulates air from the cuvette chamber outlet opening to the cuvette chamber inlet opening, and a drying body. The drying body is provided as a container of a hygroscopic agent defined by a drying substance which is arranged in a drying path between the cuvette chamber outlet opening and the cuvette chamber inlet opening so that air flows through the drying body.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: September 10, 2019
    Assignee: HACH LANGE GMBH
    Inventors: Manfred Battefeld, Hans-Joachim Kumpch, Axel Leyer, Bas De Heij, Clemens Hanschke, Michael Kueppers, Andreas Jonak, Elk Fricke, Heinz Rudde, Markus Hahn, Markus Lenhard, Rolf Uthemann, Sebastian Minke, Andreas Golitz, Bernd Gassner, Frank Steinhauer, Lothar Heidemanns, Andreas Mitreiter
  • Patent number: 10408612
    Abstract: The present disclosure relates to an apparatus and method for visual inspection of a radial surface of a camshaft lobe. Upon visual inspection of the radial surface of the camshaft lobe via the apparatus and method of the present disclosure, surface roughness, or ‘chatter’, can be evaluated. Rapid evaluation of camshaft lobe chatter provides for improved manufacturing efficiency and decreased production delays.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: September 10, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jonathan C. Ortt, Cheryl A. Rollins, Samuel H. Bauer, William R. Coulter, II
  • Patent number: 10401154
    Abstract: A monitoring system for an aircraft which includes a laser secured to a fuselage of the aircraft and a laser beam target device secured to a wing of the aircraft, wherein the laser is positioned to emit a laser beam onto the laser beam target device for ascertaining a deflection of the wing. A method is also provided for sensing the deflection of a portion of a wing of an aircraft which includes the steps of emitting a laser beam from a laser secured to the fuselage of an aircraft and receiving the laser beam at a laser beam target device secured to a wing of the aircraft. The method further includes the step of transmitting location information of the position of the laser beam at the laser beam target device to a controller of a gimbal wherein the gimbal secures the laser to the fuselage of the aircraft.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: September 3, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Dale M. Pitt, Stephen N. Provost
  • Patent number: 10393509
    Abstract: A pattern height measurement device capable of high-precision measurement of the dimensions of a fine pattern, and a charged particle beam device are provided. The pattern height measurement device includes a calculation device that determines dimensions of a sample, in the height direction, based on first reflected light information obtained by dispersing light reflected from a sample. The calculation device determines second reflected light information based on a formula for the relationship between the value for the dimension in the sample surface direction of a pattern formed upon the sample, obtained by irradiation of a charged particle beam on the sample, the value for the dimension in the height direction of the sample, and reflected light information; compares a second reflected light intensity and the first reflected light information; and outputs the value for the dimension in the height direction of the sample in the second reflected light information.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: August 27, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroki Kawada, Katsuhiro Sasada, Takenori Hirose, Shou Takami
  • Patent number: 10386175
    Abstract: A method is disclosed of measuring a hollow object such as a pipe including temporarily attaching to that object a reference target support such as a stencil that supports a plurality of scannable reference targets. When scanning the object with a movable scanner, most conveniently a hand-held scanner, the reference targets provide a positional reference for the scanner. A reference target support that is attachable to or movable along a hollow object has a display face presenting and supporting a plurality of scannable reference targets. The display face can stand up from a surface of the object or can lie against a surface of the object. The reference target support and the scanner can be movable together along a pipe as an internal inspection pig.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: August 20, 2019
    Assignee: Acergy France SAS
    Inventors: Jacques Lacome, Jue Wang, Cesar Atin
  • Patent number: 10383549
    Abstract: An intraoral three-dimensional measuring method, comprising: acquiring, with a handy scanner, wide range three-dimensional measurement information on a three-dimensional shape measured on a wide range in a desirable measurement range in an intraoral space; acquiring, with the handy scanner, a plurality of pieces of narrow range three-dimensional measurement information each on a three-dimensional shape measured on a narrow range narrower than the wide range in the measurement range; and locating, with a controller, the plurality of pieces of narrow range three-dimensional measurement information based on the wide range three-dimensional measurement information by use of, as a synthesis reference, intra-measurement range position information common to the wide range three-dimensional measurement information and each of the plurality of pieces of narrow range three-dimensional measurement information, and creating synthetic three-dimensional information on the measurement range.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: August 20, 2019
    Assignee: J. MORITA MFG. CORP.
    Inventors: Keisuke Sorimoto, Mikinori Nishimura, Tsuyoshi Tanaka, Masayuki Sano, Keiichi Tsuda, Ryosuke Kaji
  • Patent number: 10386176
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: August 20, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 10379028
    Abstract: The invention describes a laser sensor module (100) which is adapted to detect or determine at least two different physical parameters by means of self-mixing interference by focusing a laser beam to different positions. Such a laser sensor module (100) may be used as an integrated sensor module, for example, in mobile devices (250). The laser sensor module (100) may be used as an input device and in addition as a sensor for detecting physical parameters in an environment of the mobile communication device (250). One physical parameter in the environment of the mobile communication device (250) may, for example, be the concentration of particles in the air (air pollution, smog . . . ). The invention further describes a related method and computer program product.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: August 13, 2019
    Assignee: PHILIPS PHOTONICS GMBH
    Inventors: Johannes Hendrikus Maria Spruit, Alexander Marc Van Der Lee, Gerben Kooijman, Okke Ouweltjes, Joachim Wilhelm Hellmig, Arnoldus Johannes Martinus Jozeph Ras, Petrus Theodorus Jutte
  • Patent number: 10378888
    Abstract: A device, for spatially measuring surfaces, includes a projector for projecting patterns into an object space, two cameras for recording pictures of a surface in the object space, and a control and evaluation unit for activating the cameras and evaluating the pictures. The projector includes a light source, a projection lens, at least one rotatably arranged pattern structure, and a drive for rotating the at least one pattern structure. The control and evaluation unit to: activate the cameras for simultaneously recording a picture at each of a plurality of successive points in time; identify corresponding points in the picture planes of the cameras, by way of evaluating a correlation function between the sequences of brightness values acquired for potentially corresponding points and maximizing a value of the correlation; and determine spatial coordinates of surface points by way of triangulation on the basis of the identified corresponding points.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: August 13, 2019
    Assignees: FRIEDRICH-SCHILLER-UNIVERSITAET JENA, FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN
    Inventors: Stefan Heist, Gunther Notni, Kevin Srokos, Peter Lutzke, Ingo Schmidt, Peter Kühmstedt
  • Patent number: 10378996
    Abstract: Methods and apparatus for evaluating the geometric properties of optical fiber preforms, which methods include: providing an optical fiber preform having a longitudinal axis, an outer diameter and a circumference; providing a two-dimensional pattern having a length parallel to the longitudinal axis of the preform and a width greater than the outer diameter of the preform; providing an image capturing device disposed such that the preform is aligned between the pattern and the image capturing device; rotating the preform about its longitudinal axis and acquiring a first plurality of images of the pattern viewed through the preform at at least two different points along the circumference of the preform; and determining at least one geometric property of the preform from the first plurality of images.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: August 13, 2019
    Assignee: Heraeus Quartz North America LLC
    Inventor: Ivan Rasnik