Patents Examined by Hoa Q. Pham
  • Patent number: 11650098
    Abstract: A device for measuring a light radiation pressure is provided which includes a torsion balance, a laser, a convex lens, and a line array detector. The laser is configured to emit a first laser beam. The convex lens is located on an optical path of the first laser beam and configured to focus the first laser beam to a surface of the reflector. The line array detector is configured to detect a reflected first laser beam reflected by the reflector. The disclosure also provides a method for measuring the light radiation pressure using the device.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: May 16, 2023
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Lin Cong, Zi Yuan, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 11630048
    Abstract: A quasi-soft catcher, a quasi-soft capture device, and a method for using the same are provided. The quasi-soft catcher includes a base and a plurality of protruding structures for capturing at least one target biological particle from a specimen. The protruding structures are regularly arranged on a board surface of the base. Each of the protruding structures includes an outer portion configured to touch the at least one target biological particle and an inner portion that is connected between the board surface and the outer portion, and a structural strength of the inner portion is less than that of the outer portion. The board surface has an interspace region arranged outside of the protruding portions, and the interspace region occupies 20-80% of the board surface.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: April 18, 2023
    Assignee: CYTOAURORA BIOTECHNOLOGIES, INC.
    Inventors: Chung-Er Huang, Sheng-Wen Chen, Hsin-Cheng Ho, Hei-Jen Jou, Ming Chen
  • Patent number: 11624700
    Abstract: One example provides a system for reading birefringent data. The system comprises one or more light sources, a first polarization state generator positioned to generate first polarized light from light of a first wavelength band output by the one or more light sources, a second polarization state generator positioned to generate second polarized light from light of a second wavelength band output by the one or light sources, an image sensor configured to acquire an image of the sample region via the first polarized light and the second polarized light, a polarization state analyzer disposed between the sample region and the image sensor, a first bandpass filter configured to pass light of the first wavelength band onto the image sensor, and a second bandpass filter configured to pass light of the second wavelength band onto the image sensor.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: April 11, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ariel Gomez Diaz, David Lara Saucedo, Peter Gyula Scholtz, Ioan Alexandru Stefanovici, Pashmina Jonathan Cameron, Govert Michael Verkes, Richard John Black, Timothy John Deegan, James Hilton Clegg, Antony Ian Taylor Rowstron
  • Patent number: 11624836
    Abstract: An assembly includes an optical element having a light-shaping region. A light emitter is aimed into the optical element along an internal reflective path. The internal reflective path extends across the light-shaping region. A photodetector is positioned along the internal reflective path. Integrity of the optical element is determined based on detection of light from the light emitter along the internal reflective path by the photodetector.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: April 11, 2023
    Assignee: Continental Autonomous Mobility US, LLC
    Inventors: Jacob A Bergam, Cleveland Eugene Rayford, II, Luis Alfredo Villalobos-Martinez
  • Patent number: 11624709
    Abstract: An adhesion defect detection apparatus includes an inspection window having a first dummy area, a second dummy area, and an inspection area disposed between the first dummy area and the second dummy area. A first shape changer is disposed on the inspection window. The first shape changer is configured to change a shape of the inspection window in a first direction. A second shape changer is disposed outside of both the first dummy area and the second dummy area. The second shape changer is configured to change a shape of the inspection window in a second direction that is perpendicular to the first direction.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 11, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventor: Tae Jin Hwang
  • Patent number: 11614405
    Abstract: The present application discloses a sensor system that includes a sensor having a sensor surface, a sample cartridge including one or more flexible membranes and a membrane frame, the membrane frame including one or more openings covered by the one or more flexible membranes defining one or more wells for holding one or more samples, the flexible membrane having a sample side supporting the sample and an opposite sensor side, the sample cartridge being removably insertable in the sensor system such that the sensor side of the flexible membrane is positioned above and faces the sensor surface, a displacement mechanism that can be actuated to displace the flexible membrane toward the sensor surface such that the sample is moved to a position closer to the sensor surface, and an optical imaging system that detects light emitted from the sensor. Disclosed also are a cartridge cassette and a method of use.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: March 28, 2023
    Assignee: Quantum Diamond Technologies Inc.
    Inventors: Colin B. Connolly, Giles P. Blaney, Akim Lennhoff, Jeffrey D. Randall, Harald Quintus-Bosz, Stuart E. Schechter, Kenneth A. Ritsher, Hooman Hosseinkhannazer, Graham McKinnon
  • Patent number: 11613812
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: March 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Patent number: 11609179
    Abstract: A method and apparatus (1) for monitoring particles flowing in a stack are disclosed. The method comprises emitting light from a light source along an optical path for scattering from the particles, rotating a rotatable monitoring assembly (15) mounted in the optical path, and detecting the scattered light using a detector. The rotatable monitoring assembly (15) contains at least two in apertures, and the method further comprises rotating the rotatable monitoring assembly (15) into a plurality of different configurations. In an operation configuration, light passes through the rotatable monitoring assembly (15) and into the stack unimpeded. In a zero-check configuration, the rotatable monitoring assembly (15) blocks the light from reaching the stack. In a span-check configuration, light of varying intensity passes from the light source through the rotatable monitoring assembly (15) into the stack.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 21, 2023
    Assignee: ENVEA UK Ltd
    Inventors: David Christopher Unitt, Trevor Allan Lye, Bruce Greetham
  • Patent number: 11604062
    Abstract: A method of determining dimensional information of a target surface includes generating a first point cloud corresponding to a first plurality of reconstructed surface points of the target surface generated by a first imaging system-illumination source pair of a phase profilometry system; generating a second point cloud corresponding to a second plurality of reconstructed surface points of the target surface generated by a second imaging system-illumination source pair of the phase profilometry system; generating an initial estimate of the target surface based on the first and second point clouds; and refining the initial surface estimate using positions of the first and second point clouds and geometry of the first and second imaging system-illumination source pairs to generate a final point cloud.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: March 14, 2023
    Assignee: CyberOptics Corporation
    Inventors: Paul R. Haugen, Evan J. Ribnick, Carl E. Haugan, Eric P. Rudd
  • Patent number: 11598721
    Abstract: A droplet sensor includes: an optical cover having an ellipsoid surface that is a portion of a spheroid; a light source disposed at or in proximity to a first focal point of the ellipsoid surface; and a light detector disposed at or in proximity to a second focal point of the ellipsoid surface, wherein the ellipsoid surface is an effective detection area configured to reflect light emitted from the light source toward the light detector, and an amount of light reflected by the effective detection area changes in accordance with adhesion of droplets on the ellipsoid surface, and wherein the optical cover has a curved surface that is tangentially connected to an outside of the effective detection area and having a curvature greater than a curvature of the ellipsoid surface.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: March 7, 2023
    Assignee: MITSUMI ELECTRIC CO., LTD.
    Inventor: Hideo Kurosawa
  • Patent number: 11598758
    Abstract: Systems and methods are provided for determining an asphaltene solubility distribution for a petroleum sample and/or other hydrocarbon sample. A vessel for performing the method can include both packing material(s) and sidewall(s) that correspond to substantially inert materials. The vessel can initially contain a precipitating solvent suitable for causing precipitation of asphaltenes from a hydrocarbon sample. Examples of a precipitating solvents can correspond to n-heptane, toluene, and mixtures of n-heptane and toluene. The petroleum sample is then introduced into the vessel, along with a carrier solvent. The volume of the precipitating solvent can be large relative to the sample, so that the solubility of asphaltenes in the sample becomes dependent on the properties of the precipitating solvent. If asphaltenes are precipitated, the asphaltenes can be washed out of the column using a dissolution solvent.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: March 7, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Eric B. Sirota, Bridget E. Lang, Birbal Chawla
  • Patent number: 11592383
    Abstract: A flow path device comprises a plate-like measurement flow path device and a plate-like separation flow path device. The measurement flow path device includes a first flow path for measuring specific particles on a first fluid and connected to a third flow path and a second flow path for correction and passing a second fluid, not including the specific particles. The separation flow path device includes a fourth flow path for separating and selecting the specific particles from a sample and collecting a fluid. The separation flow path device is on the measurement flow path device's upper surface. The sample passes through a fifth flow path, the upper surface's opening, and flows into the fourth flow path from an opening in the separation flow path device's lower surface. The first fluid passes through the lower surface's opening, and flows into the first flow path from the upper surface's opening.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: February 28, 2023
    Assignee: KYOCERA Corporation
    Inventors: Yuji Masuda, Masashi Yoneta, Jumpei Nakazono
  • Patent number: 11592442
    Abstract: The present invention relates to the use of a control marker for implementing analysis methods on spots, in particular in the context of multiplex analyses. The present invention thus relates to solid supports containing said control marker, their preparation method and their use in analysis methods. The present invention makes it possible to verify the presence, location and/or integrity of the spots at the end of the analysis method, and thus to secure the obtained results while guaranteeing that the yielded result indeed results from a present, intact and localized spot.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: February 28, 2023
    Assignee: BIO-RAD EUROPE GMBH
    Inventors: Agnes Roseline Claude Pouzet, Vincent Doury, Laurent Emmanuel Fournier, Christophe René Roger Védrine
  • Patent number: 11579104
    Abstract: A measurement system is provided for predicting a future status of a refractory lining that is lined over an inner surface of an outer wall of a manufacturing vessel and exposed to an operational cycle during which the refractory lining is exposed to a high-temperature environment for producing a non-metal and the produced non-metal. The system includes one or more laser scanners and a processor. The laser scanners are configured to conduct one or more pre-operational laser scans of the refractory lining prior to the operational cycle to collect data related to pre-operational cycle structural conditions, and one or more post-operational laser scans of the refractory lining after the operational cycle to collect data related to post-operational cycle structural conditions of the refractory lining. The processor is configured to predict future status of the refractory lining after subsequent operational cycles based on the determined exposure impact of the operational cycle.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: February 14, 2023
    Inventors: Tomas Richter, Corey Forster, Donald Abrino
  • Patent number: 11566368
    Abstract: A fiducial for use in the manufacture of a fabric article includes a hole through a layer of fabric. Another layer of fabric of the fabric article overlays and obscures the fiducial. The fiducial is detected by transmitting electromagnetic radiation through the fabric article. The electromagnetic radiation may make a single pass directly through the fabric article to a sensor, or may pass through the fabric article, be reflected off a surface, and pass back through the fabric article to the sensor.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: January 31, 2023
    Assignee: CreateMe Technologies LLC
    Inventors: Michael William Tanguay, Michael Corliss, Nicholas Chope, Martin Frederick Bamberger
  • Patent number: 11562919
    Abstract: Embodiments of systems and methods for measuring a surface topography of a semiconductor chip are disclosed. In an example, a method for measuring a surface topography of a semiconductor chip is disclosed. A plurality of interference signals and a plurality of spectrum signals are received by at least one processor. Each of the interference signals and spectrum signals corresponds to a respective one of a plurality of positions on a surface of the semiconductor chip. The spectrum signals are classified by the at least one processor into a plurality of categories using a model. Each of the categories corresponds to a region having a same material on the surface of the semiconductor chip. A surface height offset between a surface baseline and at least one of the categories is determined by the at least one processor based, at least in part, on a calibration signal associated with the region corresponding to the at least one of the categories.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: January 24, 2023
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Sicong Wang, Xiaoye Ding
  • Patent number: 11561162
    Abstract: It is aimed to provide a technology that enables highly accurate device performance evaluation and device adjustment in optical analysis of microparticles, using the same type of beads. The present technology provides an information processing device including an information processing unit that acquires a plurality of fluorescence intensities at a plurality of light irradiation powers for a fluorescence signal from a sample including particles labeled with a fluorescent dye having a single fluorescence intensity, recognizes an intensity range of each of the plurality of fluorescence intensities detected on the basis of a fluorescence intensity balance of the sample, and calculates information relating to sensitivity of a fluorescence detection unit.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: January 24, 2023
    Assignee: SONY CORPORATION
    Inventor: Katsutoshi Tahara
  • Patent number: 11549878
    Abstract: The invention relates to an in vitro method for determining the adsorbing capacity of an adsorbent having limited solubility, such as a bile acid sequestrant, under conditions simulating the mammalian gastrointestinal tract. The method is particularly useful for studying the release profiles of controlled release formulations comprising adsorbents having limited solubility.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: January 10, 2023
    Assignee: Albireo AB
    Inventors: Per-Göran Gillberg, Anna-Maria Tivert, Mike Frodsham, Jamie Farrar
  • Patent number: 11549884
    Abstract: An embodiment provides a method for measuring zinc and copper in an aqueous sample, including: reducing an aqueous sample containing an amount of zinc and an amount of copper with a reducing agent; buffering the reduced aqueous sample; chelating the amount of copper in the buffered aqueous sample with a copper(I) chelating agent; measuring the amount of copper in the aqueous sample by measuring a first change in intensity of the absorbance of the copper chelated aqueous sample; chelating the amount of zinc in the buffered aqueous sample with a zinc(II) chelating agent; and measuring the amount of zinc in the aqueous sample by measuring a second change in intensity of the absorbance of the zinc chelated aqueous sample. Other aspects are described and claimed.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 10, 2023
    Assignee: HACH COMPANY
    Inventors: Angella Nicholle Greenawalt, Brendan Easley Young, Melanie Ann Roth
  • Patent number: 11549846
    Abstract: A sunlight exposure indicator device is disclosed that can determine the amount of time (e.g., hours) of PAR sunlight that occurs in a specific area for the optimal growth of a plant, as corresponds to the plant industry common designations of Full Shade, Partial Shade, Partial Sun and Full Sun. These designations can be used to determine plant selection for all types of plants including grasses, shrubs, flowers, vegetables and herbs, and trees. This device utilizes irreversible, slow-reacting, photochromic pigments applied to a substrate. Using multiple instances of this device will allow someone to easily test and accurately determine the amount of PAR sunlight (hours) received during a one-day sunlight cycle in multiple spots simultaneously. The sunlight exposure indicator device is a one-time-use, non-electronic, disposable device.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: January 10, 2023
    Inventor: Catherine M. Floam