Patents Examined by Jarrett Stark
  • Patent number: 9640443
    Abstract: Semiconductor devices are provided. A semiconductor device includes a substrate including first through fourth areas. Moreover, first through fourth gate insulating layers are on the first through fourth areas, respectively. Amounts of work function control materials in the first through fourth gate insulating layers, nitrogen concentrations in the first through fourth gate insulating layers, and/or thicknesses of the first through fourth gate insulating layers vary among the first through fourth gate insulating layers. Methods for fabricating semiconductor devices are also provided.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: May 2, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kug-Hwan Kim, Jong-Ho Lee, Woo-Hee Kim, Nae-In Lee
  • Patent number: 9640454
    Abstract: A semiconductor device includes an insulating substrate having a circuit plate on a principal surface thereof; a semiconductor element fixed to the circuit plate; an external terminal having one end fixed to the circuit plate; and a printed circuit board facing the principal surface of the insulating substrate, and having a through-hole for passing through the external terminal. A rigidity of a peripheral region of the through-hole is lower than a rigidity of other regions.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: May 2, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Norihiro Nashida, Yoko Nakamura
  • Patent number: 9640637
    Abstract: A method for producing a semiconductor device includes a first step of forming a first insulating film around a fin-shaped semiconductor layer; a second step of forming a first pillar-shaped semiconductor layer, a first dummy gate, a second pillar-shaped semiconductor layer, and a second dummy gate; a third step of forming a third dummy gate and a fourth dummy gate; a fourth step of forming a third diffusion layer in an upper portion of the fin-shaped semiconductor layer, in a lower portion of the first pillar-shaped semiconductor layer, and in a lower portion of the second pillar-shaped semiconductor layer; a fifth step of forming a gate electrode and a gate line around the first pillar-shaped semiconductor layer and forming a contact electrode and a contact line around the second pillar-shaped semiconductor layer; and a sixth step of forming first to fifth contacts.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: May 2, 2017
    Assignee: UNISANTIS ELECTRONICS SIGNAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 9640488
    Abstract: An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a first recess extending from the first surface towards the second surface; a second recess extending from a bottom of the first recess towards the second surface, wherein a sidewall and the bottom of the first recess and a second sidewall and a second bottom of the second recess together form an exterior side surface of the semiconductor substrate; a wire layer disposed over the first surface and extending into the first recess and/or the second recess; an insulating layer positioned between the wire layer and the semiconductor substrate; and a metal light shielding layer disposed over the first surface and having at least one hole, wherein a shape of the at least one hole is a quadrangle.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: May 2, 2017
    Assignee: XINTEC INC.
    Inventors: Yi-Min Lin, Yi-Ming Chang, Shu-Ming Chang, Yen-Shih Ho, Tsang-Yu Liu, Chia-Ming Cheng
  • Patent number: 9640506
    Abstract: An embodiment for manufacturing electronic devices is proposed. The embodiment includes the following phases: a) forming a plurality of chips in a semiconductor material wafer including a main surface; each chip includes respective integrated electronic components and respective contact pads facing the main surface; said contact pads are electrically coupled to the integrated electronic components; b) attaching at least one conductive ribbon to at least one contact pad of each chip; c) covering the main surface of the semiconductor material wafer and the at least one conductive ribbon with a layer of plastic material; d) lapping an exposed surface of the layer of plastic material to remove a portion of the plastic material layer at least to uncover portions of the at least one conductive ribbon, and e) sectioning the semiconductor material wafer to separate the chips.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: May 2, 2017
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Federico Giovanni Ziglioli
  • Patent number: 9633869
    Abstract: A package structure includes an interposer, a die over and bonded to the interposer, and a Printed Circuit Board (PCB) underlying and bonded to the interposer. The interposer is free from transistors therein (add transistor), and includes a semiconductor substrate, an interconnect structure over the semiconductor substrate, through-vias in the silicon substrate, and redistribution lines on a backside of the silicon substrate. The interconnect structure and the redistribution lines are electrically coupled through the through-vias.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: April 25, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sao-Ling Chiu, Kuo-Ching Hsu, Wei-Cheng Wu, Ping-Kang Huang, Shang-Yun Hou, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 9634129
    Abstract: An insulated gate bipolar transistor (IGBT) includes a gate trench, an emitter trench, and an electrically insulative layer coupled to the emitter trench and the gate trench and electrically isolating the gate trench from an electrically conductive layer. A contact opening in the electrically insulative layer extends into the emitter trench and the electrically conductive layer electrically couples with the emitter trench therethrough. A P surface doped (PSD) region and an N surface doped (NSD) region are each located between the electrically conductive layer and a plurality of semiconductor layers of the IGBT and between the gate trench and the emitter trench. The electrically conductive layer electrically couples to the plurality of semiconductor layers through the PSD region and/or the NSD region.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: April 25, 2017
    Assignee: SEMICONDUCTOR COMPONENT INDUSTRIES, LLC
    Inventor: Takumi Hosoya
  • Patent number: 9634003
    Abstract: Methods for abutting two cells with different sized diffusion regions and the resulting devices are provided. Embodiments include abutting a first cell having first drain and source diffusion regions and a second cell having second drain and source diffusion regions, larger than the first diffusion regions, by: forming a dummy gate at a boundary between the two cells; forming a continuous drain diffusion region having an upper portion crossing the dummy gate and encompassing the entire first drain diffusion region and part of the second drain diffusion region and having a lower portion beginning over the dummy gate and encompassing a remainder of the second drain diffusion region; forming a continuous source diffusion region that is the mirror image of the continuous drain diffusion region; and forming a poly-cut mask over the dummy gate between, but separated from, the continuous drain and source diffusion regions.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: April 25, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Navneet Jain, Juhan Kim, Andy Nguyen, Mahbub Rashed
  • Patent number: 9634249
    Abstract: A device includes a pillar-shaped insulating layer above a first pillar-shaped semiconductor layer. A resistance-changing film is around an upper portion of the pillar-shaped insulating layer and a lower electrode is around a lower portion of the pillar-shaped insulating layer and connected to the resistance-changing film. A reset gate insulating film surrounds the resistance-changing film, and a reset gate surrounds the reset gate insulating film.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: April 25, 2017
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 9634000
    Abstract: A transistor device and a method for forming a fin-shaped field effect transistor (FinFET) device, with the channel portion of the fins on buried silicon oxide, while the source and drain portions of the fins on silicon. An example method includes receiving a wafer with a silicon layer electrically isolated from a silicon substrate by a buried oxide (BOX) layer. The BOX layer is in physical contact with the silicon layer and the silicon substrate. The method further comprises implanting a well in the silicon substrate and forming vertical sources and drains over the well between dummy gates. The vertical sources and drains extend through the BOX layer, fins, and a portion of the dummy gates.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 25, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hong He, Chiahsun Tseng, Chun-chen Yeh, Yunpeng Yin
  • Patent number: 9627338
    Abstract: A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: April 18, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: See Chian Lim, Teck Tiong Tan, Yung Kuan Hsiao, Ching Meng Fang, Yoke Hor Phua, Bartholomew Liao
  • Patent number: 9627344
    Abstract: The semiconductor device of the present invention includes an insulating layer, a copper wiring for wire connection formed on the insulating layer, a shock absorbing layer formed on an upper surface of the copper wiring, the shock absorbing layer being made of a metallic material with a hardness higher than copper, a bonding layer formed on the shock absorbing layer, the bonding layer having a connection surface for a wire, and a side protecting layer covering a side surface of the copper wiring, wherein the side protecting layer has a thickness thinner than a distance from the upper surface of the copper wiring to the connection surface of the bonding layer.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: April 18, 2017
    Assignee: ROHM CO., LTD.
    Inventors: Satoshi Kageyama, Isamu Nishimura
  • Patent number: 9627431
    Abstract: A solid-state imaging device according to the present disclosure includes: a charge storage region that stores a signal charge obtained through photoelectric conversion in a photoelectric conversion film; an amplification transistor that amplifies the signal charge stored in the charge storage region in a corresponding pixel; a contact plug that is electrically connected to the charge storage region and contains a semiconductor material; and a line that is disposed above the contact plug and contains a semiconductor material. The contact plug and the charge storage region are electrically connected, and the contact plug and a gate electrode of the amplification transistor are electrically connected via the line.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: April 18, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Mitsuyoshi Mori, Ryohei Miyagawa, Yoshiyuki Ohmori, Yoshihiro Sato, Yutaka Hirose, Yusuke Sakata, Toru Okino
  • Patent number: 9627325
    Abstract: An embodiment is a semiconductor device comprising a first bond pad on a first substrate, the first bond pad having a first center line through a center of the first bond pad and orthogonal to a top surface of the first substrate, and a first conductive connector on a second substrate, the first conductive connector having a second center line through a center of the first conductive connector and orthogonal to a top surface of the second substrate, the second substrate over the first substrate with the top surface of the first substrate facing the top surface of the second substrate. The semiconductor device further comprises a first alignment component adjacent the first bond pad on the first substrate, the first alignment component configured to align the first center line with the second center line.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Kai Liu, Chia-Chun Miao, Kai-Chiang Wu, Shih-Wei Liang, Ching-Feng Yang, Yen-Ping Wang, Chun-Lin Lu
  • Patent number: 9627484
    Abstract: A method for adjusting a threshold voltage includes depositing a strained liner on a gate structure to strain a gate dielectric. A threshold voltage of a transistor is adjusted by controlling an amount of strain in the liner to control an amount of work function (WF) modulating species that diffuse into the gate dielectric in a channel region. The liner is removed.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: April 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Mohit Bajaj, Terence B. Hook, Rajan K. Pandey, Rajesh Sathiyanarayanan
  • Patent number: 9620669
    Abstract: According to one embodiment, a semiconductor light emitting device includes a light emitting chip and a fluorescent material layer. The light emitting chip includes a semiconductor layer, a first electrode, a second electrode, an insulating layer, a first interconnect layer, a second interconnect layer, a first metal pillar, a second metal pillar, and a resin layer. The semiconductor layer includes a light emitting layer, a first major surface, and a second major surface formed on a side opposite to the first major surface. The fluorescent material layer is provided on the first major surface and has a larger planer size than the light emitting chip.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: April 11, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Sugizaki, Hideki Shibata, Akihiro Kojima, Masayuki Ishikawa, Hideo Tamura, Tetsuro Komatsu
  • Patent number: 9620737
    Abstract: An organic light emitting display apparatus includes a substrate including a pixel region, a first electrode on the substrate, a second electrode on the first electrode, an organic light emission layer between the first and second electrodes to emit light, a plurality of layers on the second electrode, and a light compensation pattern on the second electrode and overlapping the pixel region, the light compensation pattern including a plurality of protrusion patterns having progressively decreasing widths as a distance from a center of the pixel region increases, and a plurality of grooves separating the protrusions in a direction parallel to the substrate from the center of the pixel region.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: April 11, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Hyesog Lee, Chi-o Cho
  • Patent number: 9620585
    Abstract: At least some illustrative device embodiments include a highly-doped n-type semiconductor substrate having a first epitaxial layer of a lightly-doped n-type semiconductor; and a second epitaxial layer of a lightly-doped p-type semiconductor to form a vertical diode with the first epitaxial layer. A termination structure near the outer edges of the device includes a termination well in the second epitaxial layer, the termination well being a moderately-doped n-type semiconductor so as to form a horizontal diode with the second epitaxial layer. The structure further includes an electric field barrier. The electric field barrier includes at least one vertical trench extending through the termination well into the first epitaxial layer and exposing a sidewall region. The sidewall region is doped via the sidewalls to be a moderately-doped p-type semiconductor. Also provided are sidewall layers of a moderately-doped n-type semiconductor, the sidewalls electrically coupling the termination well to the substrate.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: April 11, 2017
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 9620676
    Abstract: In various embodiments, light-emitting devices incorporate smooth contact layers and polarization doping (i.e., underlying layers substantially free of dopant impurities) and exhibit high photon extraction efficiencies.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: April 11, 2017
    Assignee: CRYSTAL IS, INC.
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Patent number: 9620413
    Abstract: A semiconductor device has a carrier with a fixed size. A plurality of first semiconductor die is singulated from a first semiconductor wafer. The first semiconductor die are disposed over the carrier. The number of first semiconductor die on the carrier is independent from the size and number of first semiconductor die singulated from the first semiconductor wafer. An encapsulant is deposited over and around the first semiconductor die and carrier to form a reconstituted panel. An interconnect structure is formed over the reconstituted panel while leaving the encapsulant devoid of the interconnect structure. The reconstituted panel is singulated through the encapsulant. The first semiconductor die are removed from the carrier. A second semiconductor die with a size different from the size of the first semiconductor die is disposed over the carrier. The fixed size of the carrier is independent of a size of the second semiconductor die.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: April 11, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Thomas J. Strothmann, Damien M. Pricolo, Il Kwon Shim, Yaojian Lin, Heinz-Peter Wirtz, Seung Wook Yoon, Pandi C. Marimuthu