Patents Examined by Jason L Savage
  • Patent number: 7067200
    Abstract: A joined body and method of producing the joined body are provided. A first member containing at least a ceramic and a second member containing at least one of a metal and a metal composite are joined with each other via a metal adhesive. The metal adhesive contains at least indium and at least one material containing at least a component capable of reducing the melting point of indium and is provided between the first and second members to provide a laminate. The laminate is heated at a temperature in a solid-liquid coexisting range of an alloy comprising indium and the indium melting point reducing component to join the first and second members.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: June 27, 2006
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomoyuki Fujii, Hideyoshi Tsuruta, Tetsuya Kawajiri
  • Patent number: 7056598
    Abstract: With the objectives of alleviating the property of attacking on the mating member by scratching-off of local agglutinates on the sliding contact surface, achieving improved wear resistance, and achieving improved seizure resistance through restraint of frictional heat generation by a hard phase, a copper based sintered contact material contains shock-resistant ceramics in an amount of 0.05 to less than 0.5 wt % as non-metallic particles composed of one or more substances selected from pulverized oxides, carbides and nitrides. The shock-resistant ceramics are comprised of SiO2 and/or two or more substances selected from SiO2, Al2O3, LiO2, TiO2 and MgO.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: June 6, 2006
    Assignee: Komatsu, Ltd.
    Inventors: Takemori Takayama, Tetsuo Ohnishi, Yoshikiyo Tanaka, Keiichi Maeda, Kan'ichi Sato
  • Patent number: 7056590
    Abstract: The invention relates to a plain bearing composite material provided with a metallic support layer, optionally with a porous carrier layer applied thereto, and with a lead-free sliding layer, which forms a sliding partner and whose sliding layer material is based on plastic. The aim of the invention is to provide a plain bearing composite material that has a long serviceable life when used a high temperatures. To this end the sliding layer material comprises PEEK as a matrix forming plastic constituent, a lubricant provided in the form of zinc sulfide, a hardening constituent provided in the form of titanium dioxide, and additionally comprises carbon fibers. The weight percentage proportion of the lubricant and of the hardening constituent with regard to the mass of the sliding layer material ranges from 5 to 15% by weight, and the lubricant and the hardening constituent are provided in the form of fine particles having a particle size D50-value of no greater than 500 nm.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: June 6, 2006
    Assignee: KS Gleitlager GmbH
    Inventors: Wolfgang Bickle, Frank Haupert
  • Patent number: 7056596
    Abstract: A method for coating a surface of a track component with a coating containing aluminum by means of an arc spraying process. In order to form a coating that exhibits a high resistance to sliding and abrasive wear, aluminum and silicon are applied to the surface in a ratio of 3:2 ?Al:Si?4:1 by an arc spraying process.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: June 6, 2006
    Assignees: BWG GmbH & Co. KG, Vae GmbH
    Inventors: Walter Kunitz, Joachim Heilscher, Stefan Schmedders
  • Patent number: 7048866
    Abstract: There is provided a method for producing a metal/ceramic bonding article wherein a metal member 12 is formed so as to have a predetermined shape by printing a resist 14 in a predetermined region on the metal member 12 to etch the metal member 12 after bonding the metal member 12 to a ceramic member 10. In this method, at least one strip-like non-printed portion 16 having a width of, e.g. 0.01 to 0.5 mm, in which the resist is not printed, is provided in a region inwardly spaced from the outer periphery of the resist 14 by a predetermined distance, e.g. 0.01 to 0.5 mm, to control the etch rate in the outer peripheral portion of the metal member 12. Thus, the width and thickness of a fillet is freely changed. For example, a stepped portion (or a stepped portion and fillet) having a width of 0.05 to 0.5 mm and a thickness of 0.005 to 0.25 mm is formed in the outer peripheral portion of the metal member 12.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: May 23, 2006
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Jynji Nakamura, Noboru Kamihira
  • Patent number: 7048996
    Abstract: A temperature resistant material, comprising a temperature resistant matrix and a set of short metal fibers, which characterized in that the set of short metal fibers represents at least 0.5% by weight of the temperature resistant material. The set of short metal fibers has an equivalent diameter D in the range of 1 to 150 ?, and comprising curved fibers and entangled fibers. The curved fibers have an average length L in the range of 10 to 2000 ?.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: May 23, 2006
    Assignee: N.V. Bekaert S.A.
    Inventors: Ronny Losfeld, Lieven Anaf
  • Patent number: 7037597
    Abstract: It is an object of the present invention to provide a surface-treated copper foil wherein a surface layer which is situated on a side being not bonded to a resin in a copper foil for a printed-wiring board and on which a copper direct drilling process by carbon dioxide laser is easily applied is prepared with a small amount of a covering material in accordance with a simple manner. In the copper foil used for a direct drilling process by laser of the present invention, 50 to 1000 mg/m2 of a covering layer consisting of iron and tin, or a covering layer made of an alloy prepared from iron, tin, and at least one member selected from the group consisting of nickel, cobalt, zinc, chromium, and phosphorous is provided on at least one side of the copper foil.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: May 2, 2006
    Assignee: Fukuda Metal Foil & Powder Co., Ltd.
    Inventor: Masato Takami
  • Patent number: 7037559
    Abstract: A first metal is plated onto a substrate comprising a second metal by immersing the substrate into a bath comprising a compound of the first metal and an organic diluent. The second metal is more electropositive than the first metal. The organic diluent has a boiling point higher than a eutectic point in a phase diagram of the first and second metals. The bath is operated above the eutectic point but below the melting point of the second metal. For example, bismuth is immersion plated onto lead-free tin-based solder balls, and subsequently redistributed by fluxless reflow. Plated structures are also provided.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: May 2, 2006
    Assignee: International Business Machines Corporation
    Inventors: Emanuel I. Cooper, Charles C. Goldsmith, Stephen Kilpatrick, Carmen M. Mojica, Henry A. Nye, III
  • Patent number: 7026056
    Abstract: A structure for encapsulating and protecting fiber insulation material as well as other materials in multicompartment devices in order to provide unitized material which can be applied to any surface desired for insulation or other purposes. A first sheet of material is formed with pockets or depressions in the sheet which are adapted for receiving the material desired to be unitized and a second sheet placed over the first sheet, and the two sheets are attached together in the areas between the pockets or depressions thus encapsulating the material in the pockets. The material is unitized by placing the material in individual sealed metal foil containers or compartments, then the individual containers of unitized material are attached in matrix form to a continuous sheet, such as positioning the containers in openings in the continuous sheet. The product can be applied to any surface desired for insulation or other purposes. Preferably a multilayer metal foil material is employed in the structures.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: April 11, 2006
    Assignee: ATD Corporation
    Inventor: G. William Ragland
  • Patent number: 7022415
    Abstract: The invention is a method of bonding a ceramic part (6) to a metal part (4) by heating a component assembly (2) comprised of the metal part (4), the ceramic part (6), and a thin laminated interlayer material (8) placed between the two parts and heated at a temperature that is greater than the temperature of the eutectic formed within the laminated interlayer material (8) or between the metal part (4) and the laminated interlayer material (8), but that is less than the melting point of the ceramic part (6) or of the metal part (4). The component assembly (2) is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a strong bond between the ceramic part (6) and the metal part (4). The compact interlayer material (8?) may be further comprised of two or more sets of metal alloy spheres (16, 16?) each having distinct compositions.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: April 4, 2006
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventor: Gary D. Schnittgrund
  • Patent number: 7011888
    Abstract: Process for protecting fiber-reinforced, carbon-containing composites whose matrix comprises, at least in the outer layer, silicon carbide (SiC) and also silicon (Si) and/or silicon alloys against oxidation, which comprises the steps a) impregnation of the composite with an aqueous, phosphate-containing solution, b) drying, c) heat treatment at a temperature which is at least sufficient to convert the dried solution into insoluble compounds which are suitable for forming a self-healing glass, wherein the composite is treated oxidatively to form silicon oxide (SiO2) either prior to step a), between steps a) and b) or during or after step b) and/or c).
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: March 14, 2006
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Martin Christ, Udo Gruber, Andreas Kienzle, Jens Rosenlöcher, Rainer Zimmerman-Chopin
  • Patent number: 7005195
    Abstract: A material and method for adhering at least two materials that includes the step of interposing at least one intermediate layer between the two materials and associated adhesion material. The materials to be adhered exhibit at least one characteristic dissimilarity and the intermediate material interposed contains at least one shape memory alloy, the shape memory alloy capable of exhibiting superelasticity.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: February 28, 2006
    Assignees: General Motors Corporation, Michigan State University
    Inventors: Yang-Tse Cheng, Wangyang Ni, Leonid Charles Lev, Michael J. Lukitsch, David S. Grummon, Anita M. Weiner
  • Patent number: 7001672
    Abstract: A method of depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The medical implant device formed by a Laser Based Metal Deposition (LBMD) method. The porous material of the base promotes bone ingrowth allowing the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity when applied to bearing surfaces such as artificial joint bearing surface or a dental implant bearing surface.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: February 21, 2006
    Assignee: Medicine Lodge, Inc.
    Inventors: Daniel F. Justin, Brent E. Stucker
  • Patent number: 6989200
    Abstract: The invention is a method of bonding a ceramic part to a metal part by heating a component assembly comprised of the metal part, the ceramic part, and a compatible interlayer material such as titanium-nickel alloy placed between the two parts and heated at a temperature that is greater than the eutectic temperature of the interlayer material, where alloys, intermetallics or solid solution formed between the metal part and the metal interlayer material, but that is less than the melting point of either the ceramic part or the metal part. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the ceramic part and the metal part. The bonded component assembly is optionally treated with acid to remove unwanted materials, to assure a biocompatible component assembly for implantation in living tissue.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: January 24, 2006
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Charles L. Byers, Guangqiang Jiang, Gary D. Schnittgrund
  • Patent number: 6984446
    Abstract: Process for producing a metal layer on a substrate body. The process includes applying conductive particles to a surface of the substrate body, so that the conductive particles are fixed to the substrate body, and metallizing the substrate body together with the particles chemically and/or by electrodeposition in a metallization bath so as to form the metal layer.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: January 10, 2006
    Assignee: Infineon Technologies AG
    Inventors: Harald Gundlach, Andreas Muller-Hipper, Ewald Simmerlein-Erlbacher
  • Patent number: 6982030
    Abstract: Methods of providing improved metal coatings or metal deposits on a substrate, improvements in plating solutions that are used to provide such metal deposits and articles of the metal-coated substrates. The solderability of the metal coating is enhanced by incorporating trace amounts of phosphorus in the metal coating to reduce surface oxide formation during subsequent heating and thus enhance long term solderability of the metal coating. The phosphorus is advantageously provided in the metal coating by incorporating a source of phosphorus in a solution that is used to provide the metal coating on the substrate, and the metal coating is then provided on the substrate from the solution.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: January 3, 2006
    Assignee: Technic, Inc.
    Inventors: Yun Zhang, Robert A. Schetty, III, Kilnam Hwang
  • Patent number: 6949299
    Abstract: The present invention relates to a method of spray forming a boron steel metal article, and to the formed article. In at least one embodiment, the method comprises (a) providing a spray forming pattern, (b) spraying metallic particles onto the spray forming pattern, and (c) allowing the sprayed metallic particles to cool to form a metal article. In at least one embodiment, the metallic particles are sprayed from a carbon steel feedstock having a boron content of 0.25-2.25 weight percent, based on the total weight of the feedstock.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: September 27, 2005
    Assignee: Ford Motor Company
    Inventors: Allen Dennis Roche, David Robert Collins, Richard L. Allor
  • Patent number: 6935529
    Abstract: A fuel tank for a motor vehicle is fabricated from an austenitic stainless steel sheet having elongation of 50% or more after fracture by a uniaxial stretching test with a work-hardening coefficient of 4000 N/mm2 or a ferritic stainless steel sheet having elongation of 30% or more after fracture with Lankford value of 1.3 or more. The stainless steel sheets are reformed to a complicated shape of a fuel tank without work flaws such as cracks or break-down. Excellent corrosion-resistance of stainless steel itself is maintained in the fabricated fuel tank. Consequently, the proposed fuel tank is used without diffusion of gasoline to the open air over a long term.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: August 30, 2005
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Hanji Ishikawa, Shigeru Morikawa, Toshirou Nagoya, Toshiro Adachi, Naoto Hiramatsu, Satoshi Suzuki
  • Patent number: 6926969
    Abstract: The invention relates to a process for the production of sintered porous bodies, to porous bodies produced correspondingly using the process, and to their use. With the solution according to the invention, sintered bodies which achieve improved properties, such as an increased surface area, deformability of the structures at room temperature or modification of the initial pore volume, are to be produced. To this end, at least one sintering-active powder which forms at least one intermetallic phase or mixed crystals is applied to the surface of a porous basic body. Heat treatment is to be carried out subsequently, in which intermetallic phases or mixed crystals which increase the specific surface area can be formed.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: August 9, 2005
    Assignees: Inco Limited, Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e. V.
    Inventors: Alexander Bohm, Hartmut Gohler, Dirk Naumann
  • Patent number: RE39070
    Abstract: A wear resistant coating for protecting surfaces undergoing sliding contact is disclosed. The wear resistant coating is applied by high velocity oxygen-fuel (HVOF) deposition of a powdered blend of the coating constituents. The powdered blend includes a nickel-chromium alloy, chromium carbide, and molybdenum. The disclosed coating should find use as a bearing surface on piston rings, cylinder liners, and other components of a power cylinder assembly of an internal combustion engine.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: April 18, 2006
    Assignee: Dana Corporation
    Inventors: Thomas C. Stong, Thomas J. Smith, Peter J. Einberger