Patents Examined by Joseph Galvin, III
  • Patent number: 8766388
    Abstract: A polymerizable composition contains (A) a polymerization initiator that is an acetophenone-based compound or an acylphosphine oxide-based compound, (B) a polymerizable compound, (C) at least either a tungsten compound or a metal boride, and (D) an alkali-soluble binder.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 1, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Kimi Ikeda, Yoshinori Tamada, Makoto Kubota
  • Patent number: 8766379
    Abstract: A multi-layer scavenging metal gate stack, and methods of manufacturing the same, are disclosed. In an example, a gate stack disposed over a semiconductor substrate includes an interfacial dielectric layer disposed over the semiconductor substrate, a high-k dielectric layer disposed over the interfacial dielectric layer, a first conductive layer disposed over the high-k dielectric layer, and a second conductive layer disposed over the first conductive layer. The first conductive layer includes a first metal layer disposed over the high-k dielectric layer, a second metal layer disposed over the first metal layer, and a third metal layer disposed over the second metal layer. The first metal layer includes a material that scavenges oxygen impurities from the interfacial dielectric layer, and the second metal layer includes a material that adsorbs oxygen impurities from the third metal layer and prevents oxygen impurities from diffusing into the first metal layer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Ting Liu, Liang-Gi Yao, Yasutoshi Okuno, Clement Hsingjen Wann
  • Patent number: 8759158
    Abstract: In aspects of the assembly jig and method of the invention, when a packaging substrate is curved concaving upward at temperatures of melting solder, the gap between the assembly jig and the packaging substrate can be made smaller than the dimension of the sum of the thickness of the semiconductor chip and the thickness of the melted solder by allowing a part of the bottom surface of the chip positioning piece to become always, or substantially always, in contact with the upper surface of the packaging substrate owing to the weight of the chip positioning jig itself. As a consequence, the semiconductor chip does not slip aside out of the opening of the chip positioning piece. Therefore, the semiconductor chip can be positioned accurately on the packaging substrate.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: June 24, 2014
    Assignee: Fuji Electric Co. Ltd
    Inventor: Hideaki Takahashi
  • Patent number: 8741713
    Abstract: The present disclosure relates to a secure device having a physical unclonable function and methods of manufacturing such a secure device. The device includes a substrate and at least one high-k/metal gate device formed on the substrate. The at least one high-k/metal gate device represents the physical unclonable function. In some cases, the at least one high-k/metal gate device may be subjected a variability enhancement. In some cases, the secure device may include a measurement circuit for measuring a property of the at least one high-k/metal gate device.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: John Bruley, Vijay Narayanan, Dirk Pfeiffer, Jean-Oliver Plouchart, Peilin Song
  • Patent number: 8728901
    Abstract: A method for fabricating a non-volatile, ferroelectric random access memory (F-RAM) device is described. In one embodiment, the method includes forming an opening in an insulating layer over a surface of a substrate, and forming bottom electrode spacers proximal to sidewalls of the opening. Next, a ferroelectric dielectric layer is formed in the opening over the surface of the substrate and between the bottom electrode spacers, and a pair of top electrodes is formed within the opening comprising first and second side portions displaced laterally from respective ones of the bottom electrode spacers by the ferroelectric dielectric layer.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: May 20, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Shan Sun, Thomas Davenport, John Cronin
  • Patent number: 8721833
    Abstract: A replaceable chamber element for use in a plasma processing system, such as a plasma etching system, is described. The replaceable chamber element includes a chamber component configured to be exposed to plasma in a plasma processing system, wherein the chamber component is fabricated of a ferroelectric material.
    Type: Grant
    Filed: February 5, 2012
    Date of Patent: May 13, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Zhiying Chen, Jianping Zhao, Lee Chen, Merritt Funk, Radha Sundararajan
  • Patent number: 8722532
    Abstract: A first wiring is disposed over a semiconductor substrate. A first via is disposed over the first wiring. Further, the bottom surface of the first via is in contact with the first wiring. A first insulation layer is disposed over the semiconductor substrate, and is in contact with at least the top surface of the first wiring and the side surface of the first via. At least a part of each side surface of the first wiring and the first via cuts off each metal crystal grain.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: May 13, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Tatsuya Usami, Hiroshi Kitajima
  • Patent number: 8703620
    Abstract: A method for fabricating an integrated circuit from a semiconductor substrate having formed thereon over a first portion of the semiconductor substrate a hard mask layer and having formed thereon over a second portion of the semiconductor substrate an oxide layer. The first portion and the second portion are electrically isolated by a shallow trench isolation feature. The method includes removing the oxide layer from over the second portion and recessing the surface region of the second portion by applying an ammonia-hydrogen peroxide-water (APM) solution to form a recessed surface region. The APM solution is provided in a concentration of ammonium to hydrogen peroxide ranging from about 1:1 to about 1:0.001 and in a concentration of ammonium to water ranging from about 1:1 to about 1:20. The method further includes epitaxially growing a silicon-germanium (SiGe) layer on the recessed surface region.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 22, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Joanna Wasyluk, Stephan Kronholz, Berthold Reimer, Sven Metzger, Gregory Nowling, John Foster, Paul Besser
  • Patent number: 8704224
    Abstract: A resistive test structure that includes a semiconductor substrate with an active region, a gate stack formed over the active region, a first electrical contact in communication with the active region on opposing sides of the gate stack, the first electrical contact providing an electrical short across a first dimension of the gate stack, and a second electrical contact in communication with the active region on the opposing sides of the gate stack, the second electrical contact providing an electrical short across the first dimension of the gate stack, the first and second electrical contacts spaced along a second dimension of the gate stack perpendicular to the first dimension.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: An-Chun Tu, Chen-Ming Huang, Chih-Jen Wu, Chin-Hsiang Lin
  • Patent number: 8692349
    Abstract: An example embodiment relates to a semiconductor device including a semiconductor package in which a semiconductor chip is mounted on the package substrate. The semiconductor package may include a temperature measurement device and a temperature control circuit. The temperature measurement device may measure a temperature of the semiconductor package. The temperature control circuit may change an operation speed of the semiconductor package on the basis of the temperature of the semiconductor package measured by the temperature measurement device.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: April 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae Choon Kim, Eunseok Cho, Mi-Na Choi, Kyoungsei Choi, Heejung Hwang, Seran Bae
  • Patent number: 8692348
    Abstract: An infrared detector 1 having a bolometer element 11 and a reference element 21 is provided with a bolometer thin film 22 supported on a surface of a substrate 10while spaced apart from the surface of the substrate 10, a metal film 23 for heat dissipation formed on a surface of the bolometer thin film 22 via an insulating film 31, wherein the surface of the bolometer thin film 22 faces the substrate 10, and a plurality of metal columns 25 connected thermally with the metal film 23 for heat dissipation and the substrate 10. Since heat generated from a photodetecting portion 22aby infrared rays is efficiently dissipated to the substrate 10 via the insulating film 31, the metal film 23 for heat dissipation, the metal columns 25, and a metal film 24 for heat dissipation on the side of the substrate, only temperature variation caused by variation in use environment can be measured accurately, and downsizing can be achieved while reducing the influence of temperature variation in use environment.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: April 8, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Jun Suzuki, Fumikazu Ojima, Ryusuke Kitaura
  • Patent number: 8691703
    Abstract: A semiconductor device is manufactured by, inter alia: forming second gate lines, arranged at wider intervals than each of first gate lines and first gate lines, over a semiconductor substrate; forming a multi-layered insulating layer over the entire surface of the semiconductor substrate including the first and the second gate lines; etching the multi-layered insulating layer so that a part of the multi-layered insulating layer remains between the first gate lines and the first and the second gate lines; forming mask patterns formed on the respective remaining multi-layered insulating layers and each formed to cover the multi-layered insulating layer between the second gate lines; and etching the multi-layered insulating layers remaining between the first gate lines and between the first and the second gate lines and not covered by the mask patterns so that the first and the second gate lines are exposed.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: April 8, 2014
    Assignee: SK Hynix Inc.
    Inventors: Suk Ki Kim, Hyeon Soo Kim
  • Patent number: 8685790
    Abstract: A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Alan J. Magnus, Carl E. D. Acosta, Douglas G. Mitchell, Justin E. Poarch
  • Patent number: 8685780
    Abstract: The present invention provides a method for an organic thin film solar cell and an organic thin film solar cell manufactured by the same, which can reduce manufacturing cost by simplifying manufacturing process, ensure long-lasting durability and stability, and improve energy conversion efficiency of the solar cell.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: April 1, 2014
    Assignee: Hyundai Motor Company
    Inventors: Won Jung Kim, Yong Jun Jang, Yong Gu Kim, Ki Chun Lee, Sang Hak Kim, Mi Yeon Song
  • Patent number: 8669135
    Abstract: A system and method for fabricating a 3D image sensor structure is disclosed. The method comprises providing an image sensor with a backside illuminated photosensitive region on a substrate, applying a first dielectric layer to the first side of the substrate opposite the substrate side where image data is gathered, and applying a semiconductor layer that is optionally polysilicon, to the first dielectric layer. A least one control transistor may be created on the first dielectric layer, within the semiconductor layer and may optionally be a row select, reset or source follower transistor. An intermetal dielectric may be applied over the first dielectric layer; and may have at least one metal interconnect disposed therein. A second interlevel dielectric layer may be disposed on the control transistors. The dielectric layers and semiconductor layer may be applied by bonding a wafer to the substrate or via deposition.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang
  • Patent number: 8658543
    Abstract: A method for fabricating an integrated circuit is disclosed that includes, in accordance with an embodiment, providing an integrated circuit comprising a p-type field effect transistor (pFET), recessing a surface region of the pFET using an ammonia-hydrogen peroxide-water (APM) solution to form a recessed pFET surface region, and depositing a silicon-based material channel on the recessed pFET surface region.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: February 25, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Joanna Wasyluk, Stephan Kronholz, Yew-Tuck Chow, Richard J. Carter, Berthold Reimer, Kai Tern Sih
  • Patent number: 8658464
    Abstract: A method includes placing a mold chase over a bottom package, wherein the bottom package has a connector at a top surface of the bottom package. The mold chase includes a cover, and a pin under and connected to the cover. The pin occupies a space extending from a top surface of the connector to the cover. A polymer is filled into a space between the cover of the mold chase and the bottom package. The polymer is then cured. After the step of curing the polymer, the mold chase is removed, and the connector is exposed through an opening in the polymer, wherein the opening is left by the pin of the mold chase.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: February 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Chien-Hsiun Lee, Tsung-Ding Wang, Chun-Chih Chuang
  • Patent number: 8652966
    Abstract: A semiconductor manufacturing method includes: forming a seed film including a first metal over a bottom surface and a side wall of an opening portion formed over interlayer insulating films and a field portion located over the interlayer insulating film except the opening portion, forming a resist over the seed film and filling the opening portion with the resist, removing part of the resist, exposing the seed film formed over the upper portion of the side walls of the opening portion and the field portion, forming a cover film including a second metal, whose resistivity is higher than that of the first metal, over the seed film located over the upper portion of the side wall of the opening portion and the field portion, exposing the seed film by removing the resist, and forming a plating film including the first metal over the exposed seed film.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 18, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Akira Furuya
  • Patent number: 8642447
    Abstract: A method of manufacturing a semiconductor device includes preparing a semiconductor wafer including a silicon substrate and a laminate having a compound semiconductor layer; etching and removing a part of the laminate in a thickness direction to form trench regions in a grid, each trench region including a plurality of stripe grooves extending in parallel to each other; filling the groove with a material having a lower hardness than the compound semiconductor layer to form a buried region; and dividing the semiconductor wafer into a plurality of chips by dicing using a blade at a dicing line which is defined within the trench region and includes a plurality of the buried regions.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 4, 2014
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Hironori Itou, Akio Iwabuchi
  • Patent number: 8642393
    Abstract: An embodiment is a package-on-package (PoP) device comprising a first package on a first substrate and a second package over the first package. A plurality of wire sticks disposed between the first package and the second package and the plurality of wire sticks couple the first package to the second package. Each of the plurality of wire sticks comprise a conductive wire of a first height affixed to a bond pad on the first substrate and each of the plurality of wire sticks is embedded in a solder joint.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: February 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Mirng-Ji Lii, Chien-Hsun Lee, Yung Ching Chen, Jiun Yi Wu