Patents Examined by Karen Kusumakar
  • Patent number: 11817349
    Abstract: A conductive route for an integrated circuit assembly may be formed using a sequence of etching and passivation steps through layers of conductive material, wherein the resulting structure may include a first route portion having a first surface, a second surface, and at least one side surface extending between the first surface and the second surface, an etch stop structure on the first route portion, a second route portion on the etch stop layer, wherein the second route portion has a first surface, a second surface, and at least one side surface extending between the first surface and the second surface, and a passivating layer abutting the at least one side surface of the second route portion.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: November 14, 2023
    Assignee: Intel Corporation
    Inventors: Jeremy Ecton, Brandon C. Marin, Leonel Arana, Matthew Tingey, Oscar Ojeda, Hsin-Wei Wang, Suddhasattwa Nad, Srinivas Pietambaram, Gang Duan
  • Patent number: 11817384
    Abstract: The present disclosure provides an interconnect structure and a method for forming an interconnect structure. The method for forming an interconnect structure includes forming a bottom metal line in a first interlayer dielectric layer, forming a second interlayer dielectric layer over the bottom metal line, exposing a top surface of the bottom metal line, increasing a total surface area of the exposed top surface of the bottom metal line, forming a conductive via over the bottom metal line, and forming a top metal line over the conductive via.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shuen-Shin Liang, Ken-Yu Chang, Hung-Yi Huang, Chien Chang, Chi-Hung Chuang, Kai-Yi Chu, Chun-I Tsai, Chun-Hsien Huang, Chih-Wei Chang, Hsu-Kai Chang, Chia-Hung Chu, Keng-Chu Lin, Sung-Li Wang
  • Patent number: 11810859
    Abstract: Structures are described that include multi-layered adhesion promotion films over a conductive structure in a microelectronic package. The multi-layered aspect provides adhesion to surrounding dielectric material without a roughened surface of the conductive structure. Furthermore, the multi-layered aspect allows for materials with different dielectric constants to be used, the average of which can provide a closer match to the dielectric constant of the surrounding dielectric material. According to an embodiment, a first dielectric layer that includes at least one nitride material can provide good adhesion with the underlying conductive structure, while one or more subsequent dielectric layers that include at least one oxide material can provide different dielectric constant values (e.g., typically lower) compared to the first dielectric layer to bring the overall dielectric constant closer to that of a surrounding dielectric material.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: November 7, 2023
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli, Cemil S. Geyik, Kemal Aygun
  • Patent number: 11810957
    Abstract: Disclosed is a semiconductor device including a substrate including first and second active regions, a device isolation layer on the substrate and defining first and second active patterns, first and second gate electrodes running across the first and second active regions and aligned with each other, first and second source/drain patterns on the first and second active patterns, a first active contact connecting the first and second source/drain patterns to each other, and a gate cutting pattern between the first and second gate electrodes. An upper portion of the first active contact includes first and second upper dielectric patterns. The first active contact has a minimum width at a portion between the first and second upper dielectric patterns. A minimum width of the gate cutting pattern is a second width. A ratio of the first width to the second width is in a range of 0.8 to 1.2.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: November 7, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Juhun Park, Deokhan Bae, Jin-Wook Kim, Yuri Lee, Inyeal Lee, Yoonyoung Jung
  • Patent number: 11810816
    Abstract: A semiconductor structure is provided. The semiconductor structure include a substrate and a first dielectric layer having at least one via over the substrate. The first dielectric layer includes a first portion having a first thickness and a second portion having a second thickness greater than the first thickness. The semiconductor structure further includes a second dielectric layer containing at least one first conductive line overlying the first portion of the first dielectric layer and at least one second conductive line overlying the second portion of the first dielectric layer. The at least one first conductive line includes a first conductive portion and a conductive cap, and the at least one second conductive line including a second conductive portion having a top surface coplanar with a top surface of the conductive cap.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Kang Fu, Ming-Han Lee
  • Patent number: 11804408
    Abstract: A method includes forming a gate structure over fins protruding from a semiconductor substrate; forming an isolation region surrounding the fins; depositing a spacer layer over the gate structure and over the fins, wherein the spacer layer fills the regions extending between pairs of adjacent fins; performing a first etch on the spacer layer, wherein after performing the first etch, first remaining portions of the spacer layer that are within inner regions extending between pairs of adjacent fins have a first thickness and second remaining portions of the spacer layer that are not within the inner regions have a second thickness less than the first thickness; and forming an epitaxial source/drain region adjacent the gate structure and extending over the fins, wherein portions of the epitaxial source/drain region within the inner regions are separated from the first remaining portions of the spacer layer.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: October 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Yee-Chia Yeo
  • Patent number: 11798884
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes an active region including a channel region and a source/drain region and extending along a first direction, and a source/drain contact structure over the source/drain region. The source/drain contact structure includes a base portion extending lengthwise along a second direction perpendicular to the first direction, and a via portion over the base portion. The via portion tapers away from the base portion.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11791207
    Abstract: A method of forming a semiconductor device can comprise providing a first shift region in which to determine a first displacement. A second shift region may be provided in which to determine a second displacement. A unique electrically conductive structure may be formed comprising traces to account for the first displacement and the second displacement. The electrically conductive structure may comprise traces comprising a first portion within the first shift region and a second portion of traces in the second shift region laterally offset from the first portion of traces. A third portion of the traces may be provided in the routing area between the first shift region and the second shift region. A unique variable metal fill may be formed within the fill area. The variable metal fill may be electrically isolated from the unique electrically conductive structure.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: October 17, 2023
    Assignee: Deca Technologies USA, Inc.
    Inventors: David Ryan Bartling, Craig Bishop, Timothy L. Olson
  • Patent number: 11791436
    Abstract: A semiconductor light-emitting device comprises a substrate; a first adhesive layer on the substrate; multiple epitaxial units on the first adhesive layer; a second adhesive layer on the multiple epitaxial units; multiple first electrodes between the first adhesive layer and the multiple epitaxial units, and contacting the first adhesive layer and the multiple epitaxial units; and multiple second electrodes between the second adhesive layer and the multiple epitaxial units, and contacting the second adhesive layer and the multiple epitaxial units; wherein the multiple epitaxial units are totally separated.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: October 17, 2023
    Assignee: EPISTAR CORPORATION
    Inventors: Hsin-Chih Chiu, Chih-Chiang Lu, Chun-Yu Lin, Ching-Huai Ni, Yi-Ming Chen, Tzu-Chieh Hsu, Ching-Pei Lin
  • Patent number: 11791534
    Abstract: This application relates to a device for signal transmission (e.g., radio frequency transmission) and a method for forming the device. For example, the method includes: depositing an insulating layer that includes polybenzobisoxazole (PBO) on a carrier; forming a backside layer including polyimide (PI) over the adhesive layer; forming a die-attach film (DAF) over the backside layer; forming one or more through-insulator via (TIV)-wall structures and one or more TIV-grating structures on the second backside layer; placing a die, such as a radio frequency (RF) integrated circuit (IC) die, on the DAF; encapsulating the die, the one or more TIV-wall structures, and the one or more TIV-grating structures, with a molding compound to form an antenna package including one or more antenna regions; and forming a redistribution layer (RDL) structure on the encapsulated package. The RDL structure can include one or more antenna structures coupled to the die.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: October 17, 2023
    Assignee: Tawian Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Wei Kuo, Wen-Shiang Liao
  • Patent number: 11791380
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a substrate, and a first transistor of a first conductivity type over the substrate. In an embodiment, the first transistor comprises a first semiconductor channel, and a first gate electrode around the first semiconductor channel. In an embodiment, the semiconductor device further comprises a second transistor of a second conductivity type above the first transistor. The second transistor comprises a second semiconductor channel, and a second gate electrode around the second semiconductor channel. In an embodiment, the second gate electrode and the first gate electrode comprise different materials.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: October 17, 2023
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Walid M. Hafez, Tanuj Trivedi, Jeong Dong Kim, Ting Chang, Babak Fallahazad, Hsu-Yu Chang, Nidhi Nidhi
  • Patent number: 11791319
    Abstract: Edge-connected semiconductor systems are described along with methods of making and using the same. First and second integrated circuit packages are obtained, each including a substrate assembly having top and bottom sides and an edge that extends between the top and the bottom sides. Edge contacts are disposed on the edges of the substrate assemblies. A ganged assembly is formed by establishing conductive paths between the edge contacts of the substrate assemblies. The ganged assembly is coupled to a printed circuit board (“PCB”) by coupling host contacts on one or more of the substrate assemblies to corresponding contacts on the PCB.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: October 17, 2023
    Assignee: NVIDIA Corporation
    Inventors: Joey Cai, Tiger Yan, Jacky Zhu, Oliver Yi, Zach Wang
  • Patent number: 11784242
    Abstract: A manufacturing process and device are provided in which a first opening in formed within a substrate. The first opening is reshaped into a second opening using a second etching process. The second etching process is performed with a radical etch in which neutral ions are utilized. As such, substrate push is reduced.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-Feng Young, Po-Chi Wu, Che-Cheng Chang
  • Patent number: 11784264
    Abstract: A method for fabricating a solar cell is disclosed. The method can include forming a dielectric region on a surface of a solar cell structure and forming a first metal layer on the dielectric region. The method can also include forming a second metal layer on the first metal layer and locally heating a particular region of the second metal layer, where heating includes forming a metal bond between the first and second metal layer and forming a contact between the first metal layer and the solar cell structure. The method can include forming an adhesive layer on the first metal layer and forming a second metal layer on the adhesive layer, where the adhesive layer mechanically couples the second metal layer to the first metal layer and allows for an electrical connection between the second metal layer to the first metal layer.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: October 10, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Matthieu Moors, Taeseok Kim
  • Patent number: 11784127
    Abstract: Electronic devices and methods of forming electronic devices using a ruthenium or doped ruthenium liner and cap layer are described. A liner with a ruthenium layer and a cobalt layer is formed on a barrier layer. A conductive fill forms a second conductive line in contact with the first conductive line.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: October 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Wenjing Xu, Feng Chen, Tae Hong Ha, Xianmin Tang, Lu Chen, Zhiyuan Wu
  • Patent number: 11784233
    Abstract: An IC structure includes a source epitaxial structure, a drain epitaxial structure, a first silicide region, a second silicide region, a source contact, a backside via rail, a drain contact, and a front-side interconnection structure. The first silicide region is on a front-side surface, a first sidewall of the source epitaxial structure, and a second sidewall of the source epitaxial structure. The second silicide region is on a front-side surface of the drain epitaxial structure. The source contact is in contact with the first silicide region and has a protrusion extending past a backside surface of the source epitaxial structure. The backside via rail is in contact with the protrusion of the source contact. The drain contact is in contact with the second silicide region. The front-side interconnection structure is on a front-side surface of the source contact and a front-side surface of the drain contact.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huan-Chieh Su, Li-Zhen Yu, Chun-Yuan Chen, Cheng-Chi Chuang, Shang-Wen Chang, Yi-Hsun Chiu, Pei-Yu Wang, Ching-Wei Tsai, Chih-Hao Wang
  • Patent number: 11772963
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first substrate including a first face and a second face opposite the first face. A second substrate is bonded to the first face of the first substrate such that the second face of the first substrate faces away from the second substrate. One or more recesses are arranged in the second face of the first substrate and are configured to compensate for thermal expansion or thermal contraction.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: October 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hang Chang, I-Shi Wang, Jen-Hao Liu
  • Patent number: 11776950
    Abstract: An IC includes: a plurality of first cells placed in a series of first rows extending in a first horizontal direction and each having a first height; and a plurality of second cells placed in a series of second rows extending in the first horizontal direction and each having a second height different from the first height, wherein a total height of the series of first rows corresponds to a multiple of a height of a first multi-height cell with a maximum height among the plurality of first cells, and a total height of the series of second rows corresponds to a multiple of a height of a second multi-height cell with a maximum height among the plurality of second cells.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: October 3, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Bonghyun Lee
  • Patent number: 11776958
    Abstract: A semiconductor device includes a buried communication (com) conductor (BC) CFET including: first and second active regions arranged in a stack according to CFET-type configuration; a first layer of metallization (M_1st layer) over the stack which includes first conductors configured for data or control signals (communication (com) conductors), and power grid (PG) conductors; and a layer of metallization (M_B layer) below the stack and which includes second com conductors.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Guo-Huei Wu, Pochun Wang, Chih-Liang Chen, Li-Chun Tien
  • Patent number: 11776963
    Abstract: A semiconductor structure includes a substrate and a fin protruding from the substrate along a first direction, wherein the fin includes a first semiconductive layer over the substrate, a second semiconductive layer over the first semiconductive layer along the first direction, and a dielectric layer disposed between the first semiconductive layer and the second semiconductive layer and electrically isolated from the first semiconductive layer and the second semiconductive layer. The semiconductor structure also includes a gate electrode including: a first conductive portion extending in a second direction different from the first direction and including an upper surface level with an upper surface of the first semiconductive layer; and a second conductive portion electrically isolated from the first conductive portion and including a bottom surface level with a bottom surface of the second semiconductive layer.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventor: Wei-Lun Chen