Patents Examined by Layla Lauchman
  • Patent number: 8248608
    Abstract: A method of determining the location of a lithographic substrate relative to an imprint template is disclosed.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: August 21, 2012
    Assignee: ASML Netherlands B.V.
    Inventor: Arie Jeffrey Den Boef
  • Patent number: 8248588
    Abstract: We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: August 21, 2012
    Assignee: Thermo Scientific Portable Analytical Instruments Inc.
    Inventors: Masud Azimi, Arran Bibby, Christopher D. Brown, Peili Chen, Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang
  • Patent number: 8243270
    Abstract: A vibrating tip surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a nano-needle configured to vibrate. The apparatus includes the nano-needle with a substantially sharp tip at a free end opposite an end attached to a substrate. The tip is configured to adsorb an analyte. The apparatus further includes a vibration source configured to provide an alternating current (AC) electric field that induces a vibration of the free end and the tip of the nano-needle. Vibration of the nano-needle under the influence of the AC electric field facilitates detection of a Raman scattering signal from the analyte adsorbed on the nano-needle tip. The system further includes a synchronous detector configured to be gated cooperatively with the vibration of the nano-needle. The method includes inducing the vibration, illuminating the vibrating tip to produce a Raman signal, and detecting the Raman signal using the detector.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 14, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Huei Pei Kuo, Michael J. Stuke, Min Hu, Fung Suong Ou, Shih-Yuan (SY) Wang, Alexandre M. Bratkovski, Wei Wu, Zhiyong Li
  • Patent number: 8228491
    Abstract: The Field Testing Instrument (FTI) is designed for use in the regular maintenance and installation of airport Precision Approach Path Indicator (PAPI). The FTI is a self-contained and portable instrument that accurately measures the most important PAPI parameters, such as vertical aiming angle, transition angle, and light intensity. In addition to working with the current incandescent PAPIs, the FTI also measures parameters specific to the next generation LED PAPI. The FTI uses modern, efficient technology to reduce the life-cycle cost of approach lighting systems. The FTI improves on traditional PAPI testing methods by directly measuring the PAPI light beam focused to a target plate, as if seen from the pilot perspective. Due to significantly improvements in measurement accuracy and reliability, the FTI may supplement and even replace costly flight checks for PAPI maintenance with ground based operation.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: July 24, 2012
    Inventors: Rongsheng Tian, Yong Tian
  • Patent number: 8223332
    Abstract: To provide a mercury measuring apparatus of a closed system capable of performing automatically a process ranging from collection to injection of the sample composed mainly of hydrocarbon, which is effective to accomplish a highly reliable measurement. The mercury measuring apparatus 100 includes a column 1 filled with a first adsorbent 11 and a reducing agent 13, an injecting unit 3 for injecting a sample into the column 1, a first heating unit 12, a second heating unit, a mercury collecting tube 18 filled with a second adsorbent 17, a third heating unit 19, a mercury measuring unit 2, gas flow passages FP1, FP2 and FP4, flow switching valves V1 to V3, V5 and V6 for selecting one of the gas flow passages FP1, FP2 and FP4, and a control unit 4.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: July 17, 2012
    Assignee: Nippon Instruments Corporation
    Inventors: Yasuyuki Yamada, Munehiro Hoshino
  • Patent number: 8218145
    Abstract: A particle monitor system that can detect fine particles in a substrate processing apparatus. The substrate processing apparatus has a chamber in which a substrate is housed and subjected to processing, a dry pump that exhausts gas out of the chamber, and a bypass line that communicates the chamber and the dry pump together. The particle monitor system has a laser light oscillator that irradiates laser light toward a space in which the particles may be present, and a laser power measurement device that is disposed on an optical path of the laser light having passed through the space and measures the energy of the laser light.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: July 10, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Tsuyoshi Moriya, Takashi Enomoto
  • Patent number: 8218143
    Abstract: A method of detecting oxygen and/or chemical content in a subject, comprising generating at least one spectral image of the subject; generating at least one spectral image of a reference object; comparing spectrum from the subject image to the reference image to thereby reveal the relative oxygen content of the subject. A system for determining the level of oxygenation of the blood of a subject body part comprising: a hyperspectral image generator for generating a plurality of spectral images; an image capture device for capturing the spectral images; a processor for generating hyperspectral image cubes such that the spectrum of the body part is extracted and normalized using the spectrum from the reference object to cancel out the spectral response of the light source and the imager; said processor comparing spectral from a subject image to reference images to thereby reveal the relative oxygen content of the subject.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: July 10, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Neelam Gupta
  • Patent number: 8212997
    Abstract: A chromatic confocal point sensor optical pen comprises a multi-stage optical configuration providing an enhanced range-to-resolution ratio. The optical configuration comprises at least first and last axially dispersive focusing elements that combine to contribute to the overall axial chromatic dispersion of the optical pen. The first focusing element receives source radiation and focuses that radiation at a first focal region internal to the multi-stage optical configuration and the last focusing element receives radiation from a last focal region internal to the multi-stage optical configuration and outputs the measurement beam. Intermediate focusing elements may provide additional focal regions internal to the multi-stage optical configuration. This configuration provides an unprecedented combination of extended sensing range, compact lens diameter, and high numerical aperture. The focusing elements may comprise refractive lenses or diffractive optical elements.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: July 3, 2012
    Assignee: Mitutoyo Corporation
    Inventor: Yong Xie
  • Patent number: 8213008
    Abstract: Systems and methods for performing spectral-spatial mapping in (one and two dimensions) and coded spectroscopy are described. At least one embodiment includes a system for performing spectral-spatial mapping and coded spectroscopy comprising a cylindrical beam volume hologram (CBVH), the CBVH configured to receive input beams and generate diffracted beams in a first direction to perform spectral-spatial mapping, the CBVH further configured to allow input beams to pass in a second direction orthogonal to the first direction unaffected. The system further comprises a first lens configured to receive the diffracted beams and perform a Fourier transform on the input beams in the first direction, a second lens configured to receive the diffracted beams and focus the beams in the second direction to generate output beams, and a charged coupled device (CCD) configured to receive the outputs beams, the output beams used to provide spectral analysis of the input beams.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: July 3, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Omid Momtahan, Chao Ray Hsieh, Ali Adibi
  • Patent number: 8208137
    Abstract: An apparatus for detecting at least one molecule using Raman light detection includes a substrate for supporting a sample containing the at least one molecule, a laser source for emitting a laser beam to cause Raman light emission from the at least one molecule, a modulating element for modulating a spatial relationship between the laser beam and the substrate at an identified frequency to cause the Raman light to be emitted from the at least one molecule at the identified frequency, at least one detector for detecting the Raman light emitted from the at least one molecule, and a post-signal processing unit configured to process the detected Raman light emission at the identified frequency to detect the at least one molecule.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: June 26, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Min Hu, Alexandre M. Bratkovski, Jingjing Li, Huei Pei Kuo, Zhiyong Li, Fung Suong Ou, Michael Josef Stuke, Michael Renne Ty Tan, Shih-Yuan Wang, Wei Wu
  • Patent number: 8203700
    Abstract: This disclosure relates to a method that includes receiving infrared adsorption absorption information for a sample, processing the infrared adsorption absorption information for the sample to determine an identity of the sample, generating a reference signature for the identified sample, and distributing the reference signature for the identified sample to a plurality of handheld measurement devices via cellular connections with the handheld measurement devices.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: June 19, 2012
    Assignee: Ahura Scientific Inc.
    Inventors: Gregory Vander Rhodes, Kevin J. Knopp, Christopher D. Brown, Myrle E. Sieger, III
  • Patent number: 8203712
    Abstract: A color measurement device includes an aperture for obtaining light from a color sample to be measured; a plurality of sets of color filters associated with human observer functions at different regions of color space; at least one detector for measuring the intensity of filtered light; an analog to digital converter for converting voltage signals from the at least one detector to digital values representative of tristimulus values associated with each of the sets of color filters; and a processor to combine the sets of tristimulus values in order to calculate a final set of tristimulus values, the combining being a function of at least one of the sets of tristimulus values.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: June 19, 2012
    Assignee: Eastman Kodak Company
    Inventor: Christopher J. Edge
  • Patent number: 8203709
    Abstract: Emitting illumination light and auxiliary light having a wavelength range different from that of the illumination light onto an observation target simultaneously, obtaining an image formed of reflection light of the illumination light and reflection light of the auxiliary light reflected from the observation target, calculating, with respect to each pixel of the obtained image signal, estimated spectroscopic data in the wavelength range of the auxiliary light using a value of the image signal and estimated matrix data in the wavelength range of the auxiliary light stored in advance, obtaining quasi reflectivity information reflecting a reflectivity of the observation target in the wavelength range of the auxiliary light based on the estimated spectroscopic data in the wavelength range of the auxiliary light, and generating a special image based on the quasi reflectivity information.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: June 19, 2012
    Assignee: Fujifilm Corporation
    Inventor: Shuichi Ishii
  • Patent number: 8199321
    Abstract: Provided is a laser ablation spectroscopy apparatus and method. A pulse laser is focused on the sample site to generate a plasma plume during a laser ablation process. The plasma plume is detected with a spectrometer and an intensified charge coupled device. A sample of material is coupled to a stage movable in the x, y and z directions using an array of x-y-z motors. A change in the height of the sample is detected using a triangulation sensor. The apparatus includes a system computer for synchronizing the movement of the stage in the x, y and z direction during the laser ablation process. The method includes a protocol of generating one or more laser ablations per sample site. The spectral data of the total number of laser ablations for each sample site are averaged together. The protocol includes laser ablating additional sample sites and averaging the spectral data of the total number of sample sites.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: June 12, 2012
    Assignee: Applied Spectra, Inc.
    Inventors: Jong Hyun Yoo, Randolph S. Tribe, Chunyi Liu
  • Patent number: 8199324
    Abstract: The optical assemblies disclosed herein advantageously utilize a beamsplitting apparatus in association with either (i) the illumination path or (ii) the collection path of a color measurement instrument. For implementations involving the illumination path, the beamsplitting apparatus may be configured to spectrally divide one or more initial beams of light so as to emit a plurality of resultant beams of light, wherein the optical assembly is configured to illuminate a target using at least a first and a second of the plurality of resultant beams of light. Similarly, for implementations involving the collection path, the beamsplitting apparatus may be configured to spectrally divide light received from a target so as to emit a plurality of resultant beams of light, wherein the optical assembly is configured to detect at least a first and a second of the plurality of resultant beams of light.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: June 12, 2012
    Assignee: X-Rite, Inc.
    Inventors: Steven Henry Peterson, Harold VanAken
  • Patent number: 8189186
    Abstract: A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: May 29, 2012
    Assignee: Lawrence Livermore National Security, LLC.
    Inventor: Neil Reginald Beer
  • Patent number: 8189178
    Abstract: A system and method for sampling constituents in air including counting particles in the air to be sampled; collecting samples of accumulated particles; measuring UV response of a sample of accumulated particles only if the particle count exceeds a predetermined threshold; measuring IR response of that sample; and indicating a threat alarm if the IR response matches that of a target within a predetermined threshold.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: May 29, 2012
    Assignee: Foster-Miller, Inc.
    Inventors: Patrick F. Henning, Aniruddha S. Weling, Suneet Chadha, Jay D. Eversole
  • Patent number: 8184296
    Abstract: Some embodiments of the invention generally relate to an apparatus configured to monitor emissions. The apparatus includes a sampling chamber, a gas analyzer, and a particulate matter analyzer. The sampling chamber is configured to receive a portion of an exhaust flow from an exhaust stack. The portion of the exhaust flow comprises one or more gases and particulate matter. The gas analyzer is configured to receive the portion of the exhaust flow to measure at least one emission level of the one or more gases using a laser and output a signal indicative thereof. The particulate matter analyzer is operatively connected to the sampling chamber and is configured to measure the particulate matter using optics and output a signal indicative thereof.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: May 22, 2012
    Assignee: W R Systems
    Inventors: Robert G. Johns, Reginald L. Viray, Edward P. Weaver, Nathan J. Lundin, Megan Jones
  • Patent number: 8184285
    Abstract: The invention disclosed here teaches methods to fabricate and utilize a non-dispersive holographic wavelength blocker. The invention enables the observation of the Raman signal near the excitation wavelength (˜9 cm?1) with the compactness of standard thin film/holographic notch filter. The novelty is contacting several individual volume holographic blocking notch filter (VHBF) to form one high optical density blocking filter without creating spurious multiple diffractions that degrade the filter performance. Such ultra-narrow-band VHBF can be used in existing compact Raman instruments and thus will help bring high-end research to a greater number of users at a lower cost.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 22, 2012
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Patent number: 8184279
    Abstract: Methods, systems, and apparatuses are provided for measuring one or more sinusoidal Fourier components of an object. A structured second radiation is generated by spatially modulating a first radiation. The structured second radiation illuminates the object, The structured second radiation is scaled and oriented relative to the object. The object produces a third radiation in response to the illuminating. A single-element detector detects a portion of the third radiation from multiple locations on the object substantially simultaneously for each spatial modulation of the first radiation and for each orientation of the second radiation. A time-varying signal is produced based on said detected portion of the third radiations. One or more characteristics of the one or more sinusoidal Fourier components of the object are estimated based on the time-varying signal.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: May 22, 2012
    Assignee: The Regents of the University of Colorado, a Body Corporate
    Inventor: Daniel Feldkhun