Patents Examined by Long Nguyen
  • Patent number: 10884448
    Abstract: A clock glitch detection circuit includes a detection circuit and a logic circuit. The detection circuit is configured to receive a clock input signal and a clock output signal and determines whether the clock input signal and the clock output signal are in phase, so as to output a first detection signal and a second detection signal. The logic circuit is coupled to the detection circuit and configured to receive the first detection signal and the second detection signal. The logic circuit determines whether the first detection signal and the second detection signal are in phase, so as to generate a glitch detection signal. The glitch detection signal is configured to indicate whether clock glitch occurs in the clock input signal.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: January 5, 2021
    Assignee: Nuvoton Technology Corporation
    Inventors: Yung-Chi Lan, Cheng-Chih Wang
  • Patent number: 10879894
    Abstract: In one embodiment, a (pre)driver circuit includes first and a second output terminal for driving an electronic switch that includes a control terminal and a current path through the switch. The arrangement can operate in one or more first driving configurations (e.g., for PMOS), with the first and second output terminals are coupled to the current path and the control electrode of the electronic switch, respectively, and one or more second driving configurations (e.g., for NMOS, both HS and LS), wherein the first and second output terminals of the driver circuit are coupled to the control electrode and the current path of the electronic switch, respectively.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: December 29, 2020
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Daniele Zella, Vanni Poletto, Mauro Foppiani
  • Patent number: 10879891
    Abstract: A power supply voltage monitoring circuit includes a power supply switching circuit, a series circuit including a first series resistor connected to an input power supply line, a second series resistor connected to a ground potential, and a third series resistor connected between the first series resistor and the second series resistor, a first parallel circuit including a first switching element and connected in parallel to the first series resistor, a second parallel circuit including a second switching element and connected in parallel to the second series resistor, a first determination circuit configured to determine whether a first divided voltage between the first series resistor and the third series resistor is in a normal range, and a second determination circuit configured to determine whether a second divided voltage between the second series resistor and the third series resistor is in a normal range.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: December 29, 2020
    Assignee: JTEKT CORPORATION
    Inventor: Takanori Ito
  • Patent number: 10877543
    Abstract: The present disclosure provides implementations of a level shifter (LS), an integrated circuit, and a method. A LS may run in a first mode and a second mode, alternating with each other.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: December 29, 2020
    Assignees: Semiconductor Manufacturing (Beijing) International Corporation, Semiconductor Manufacturing (Shanghai) International Corporation
    Inventors: PingChen Wu, JunTao Guo, ChiaChi Yang, TzuHan Lin
  • Patent number: 10859608
    Abstract: An input circuit for detecting low voltage analog signals in an electrically noisy environment receives the analog input signal at an input terminal. The analog input signal is compared to a variable reference signal at a comparator circuit. An active hysteresis circuit provides feedback to the comparator. In a first operating mode, the active hysteresis circuit may be disabled or be configured to output a constant voltage. In a second operating mode, the active hysteresis circuit may be enabled or configured to output a varying level of voltage. The output of the feedback circuit is summed with the variable reference signal and supplied as the input signal to the comparator, such that signal against which the analog input signal is compared is a general constant value in the first operating mode and varies with respect to time in the second operating mode.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: December 8, 2020
    Assignee: Rockwell Automation Asia Pacific Business Centre Pte. Ltd.
    Inventors: Rajesh R. Shah, Michael C. Tumabcao
  • Patent number: 10862474
    Abstract: Disclosed is a transmission gate circuit including a control voltage generating circuit, a high voltage transmission circuit and a low voltage transmission circuit. The high and low voltage transmission circuits are coupled between an input terminal and an output terminal. The control voltage generating circuit generates two voltage groups according to an input voltage of the input terminal and an enable voltage and thereby controls the high and low voltage transmission circuits with the two voltage groups respectively. When the enable voltage is high, one voltage group includes identical voltages while a difference between any of the identical voltages and any voltage of the other voltage group is not higher than a predetermined voltage; when the enable voltage is low, each voltage group includes decremental voltages. The high/low voltage transmission circuit is turned on when the enable voltage is high and the input voltage is high/low.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: December 8, 2020
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Hsin-Cheng Hsu, Tay-Her Tsaur, Po-Ching Lin
  • Patent number: 10855261
    Abstract: Level-shifting circuits including a plurality of p-type metal oxide semiconductor (PMOS) devices and n-type metal oxide semiconductor (NMOS) devices may be used to level-shift an input voltage signal between a low voltage domain having a low voltage level and a high voltage domain having a high voltage level, to obtain an output voltage signal having an output voltage level at an output node. A current-controlled tie circuit may be connected between the output node and the output voltage level, to conduct a current that causes the output node of the level-shifting circuit to be in a pre-defined logic state during a power-up sequence of the level-shifting circuit. Accordingly, spurious, non-deterministic output levels are avoided during the power-up sequence.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: December 1, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jianan Yang, James Nissen, David Wade Eickbusch
  • Patent number: 10855264
    Abstract: A circuit for generating differential reference voltages, a circuit for detecting a signal peak, and an electronic device. In the circuit for generating reference voltages, a common-mode extraction circuit receives a first differential signal and a second differential signal, extracts a common-mode level from the first differential signal and the second differential signal, and applies the common-mode level to a non-inverting input terminal of a first operational amplifier. The first operational amplifier, a main control switch, a first voltage dividing resistor, a second voltage dividing resistor, and a first direct current power source constitute a feedback loop, to generate differential reference voltages matching with the common-mode level. Adjusting a current provided by the first direct current power source can change the differential reference voltages, obtaining a reference for to-be-detected amplitude of the signals.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: December 1, 2020
    Assignee: LONTIUM SEMICONDUCTOR CORPORATION
    Inventors: Cheng Tao, Xiangyu Ji, Yu Chen, Jiaxi Fu, Haiyan Wei
  • Patent number: 10848105
    Abstract: A power amplification module includes first and second amplifiers for first and second communication modes, a bypass line that bypasses the first or second amplifier, an input switch circuit that supplies a radio frequency signal to the first or second amplifier in accordance with a communication mode when a desired output level is equal to or greater than a reference level, and that supplies a radio frequency signal to the bypass line when the desired output level is less than the reference level, and an output switch circuit that outputs a first amplified signal from the first amplifier or a second amplified signal from the second amplifier in accordance with the communication mode when the desired output level is equal to or greater than the reference level, and that outputs a radio frequency signal output from the bypass line when the desired output level is less than the reference level.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: November 24, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Mizuho Ishikawa, Satoshi Sakurai
  • Patent number: 10848154
    Abstract: A level shifter includes a current mirror configured to receive an input signal in response to a first power voltage and generate an output signal by mirroring a current corresponding to a second power voltage based on a level of the input signal, a first adjusting circuit coupled to an output terminal of the current mirror and configured to adjust a voltage level of the output terminal of the current mirror in response to a bias voltage, and a second adjusting circuit coupled to a power voltage terminal which receives the second power voltage in parallel to the current mirror and configured to adjust the voltage level of the output terminal of the current mirror.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 24, 2020
    Assignee: SK hynix Inc.
    Inventor: Seung Ho Lee
  • Patent number: 10840892
    Abstract: Disclosed is a flip-flop (FF) (e.g., a D-type flip-flop (DFF) or a scan flip-flop (SFF)). The FF is configured to reduce dynamic power consumption of an integrated circuit (IC) by employing only a single-phase of a clock signal. Specifically, the FF includes a primary latch and a secondary latch. Each of these latches includes a multi-stage input driver, which internally generates a control signal based on both the single-phase clock signal and an input signal and which also generates a stored bit signal based on the control signal. Each of these latches can also include a feedback path with an inverter that inverts the stored bit signal and a tri-state logic device that generates a feedback signal that is dependent on the inverted stored bit signal, the control signal and the clock signal. As a result, the FF is a fully digital, static, true single-phase clock (TSPC) flip-flop.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: November 17, 2020
    Assignee: MARVELL ASIA PTE, LTD.
    Inventors: Krishnan S. Rengarajan, Alok Chandra, Chethan Ramanna
  • Patent number: 10823767
    Abstract: Implementations of a comparator system may include a first transistor including a gate where the gate is configured to be coupled to a resistor-capacitor (RC) noise filter coupled to a resistor. The first transistor may be included in a PMOS differential pair. A first offset resistor may be coupled to the source of the first transistor and to a source of a second transistor included in the PMOS differential pair. A second offset resistor may be coupled between the first transistor and the second transistor. A voltage difference between a first back gate bias voltage of the first transistor and a second back gate bias voltage of the second transistor may indicate a current value through the resistor.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: November 3, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Manabu Ishida
  • Patent number: 10824181
    Abstract: A reference voltage circuit includes a first MOS transistor pair having a first MOS transistor of an enhancement type having a gate and a drain connected to each other, and a second MOS transistor of a depletion type having a gate connected to a source of the first MOS transistor, a source connected to the drain of the first MOS transistor, and a drain connected to an output terminal; and a second MOS transistor pair having a third MOS transistor of an enhancement type having a gate and a drain connected to the output terminal and a source connected to the source of the second MOS transistor, and a fourth MOS transistor of a depletion type having a gate connected to the source of the third MOS transistor and a source connected to the output terminal. All the MOS transistors operate in a weak inversion region.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: November 3, 2020
    Assignee: ABLIC INC.
    Inventor: Kaoru Sakaguchi
  • Patent number: 10826494
    Abstract: A high frequency switch (1) includes a first input/output terminal (30); at least three second input/output terminals (40a to 40e); a first switch (10) including a first common terminal (11) and at least two first selection terminals (12a to 12c) selectively connected to the first common terminal (11); and a second switch (20) including a second common terminal (21) connected to the first selection terminal (12c) with a matching circuit (50) interposed therebetween and at least two second selection terminals (22a to 22c) selectively connected to the second common terminal (21), in which the first common terminal (11) is connected to the first input/output terminal (30), the first selection terminals (12a and 12b) are connected to the second input/output terminals (40a and 40b), and the second selection terminals (22a to 22c) are connected to the second input/output terminals (40c to 40e).
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: November 3, 2020
    Assignee: MURATA MANUFATURING CO., LTD.
    Inventor: Naoya Matsumoto
  • Patent number: 10819318
    Abstract: An SEU immune flip-flop includes a master stage data latch having an input, an output, a clock input, being transparent in response to a clock signal first state and being latched in response to a clock signal second state, a slave stage data latch having an input coupled to the master stage data latch output, an output, a scan output, a slave latch clock input, a scan slave latch having an input coupled to the slave stage data latch scan output, an output, and a clock input, being transparent in response to the clock signal second state and being latched in response to the clock signal first state. The slave stage data latch includes a switched inverter disabled when the slave latch is in a transparent state and enabled when the slave latch is in a latched state having a time delay longer than an SEU time period.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: October 27, 2020
    Assignee: Microchip Technology Inc.
    Inventors: Barry Britton, Phillip Johnson, John Schadt, David Onimus
  • Patent number: 10819327
    Abstract: A duty timing detector includes a saw-tooth voltage generator that outputs a saw-tooth voltage in synchronization with a toggle signal repeatedly transitioning between a high level and a low level. A sample block obtains a level of the saw-tooth voltage in synchronization with the toggle signal and outputs the obtained level as a first sample voltage. A hold block stores the first sample voltage in synchronization with the toggle signal and outputs the stored first sample voltage as a second sample voltage. A voltage divider divides the second sample voltage to output a division voltage. A comparator compares the saw-tooth voltage and the division voltage to detect a target timing in each duty of the toggle signal.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: October 27, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyunseok Nam
  • Patent number: 10819286
    Abstract: Provided is a power amplification circuit that includes: an amplifier that amplifies an input signal and outputs an amplified signal; a first bias circuit that supplies a first bias current or voltage to the amplifier; a second bias circuit that supplies a second bias current or voltage to the amplifier; a first control circuit that controls the first bias current or voltage; and a second control circuit that controls the second bias current or voltage. The current supplying capacity of the first bias circuit is different from the current supplying capacity of the second bias circuit.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: October 27, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Satoshi Tanaka, Tetsuaki Adachi, Kazuo Watanabe, Masahito Numanami, Yasuhisa Yamamoto
  • Patent number: 10819335
    Abstract: A reference voltage circuit includes a first output terminal from which a first reference voltage is supplied; a first MOS transistor of a depletion type, the first MOS transistor containing a drain connected to a power supply terminal, a gate connected to a ground terminal, and a source; a first voltage drop circuit including a first end connected to the source of the first MOS transistor and a second end connected to the first output terminal; and a second MOS transistor of a depletion type, the second MOS transistor containing a drain connected to the first output terminal, a gate connected to the ground terminal, and a source connected to the ground terminal.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: October 27, 2020
    Assignee: ABLIC Inc.
    Inventors: Kotaro Watanabe, Sukhwinder Singh
  • Patent number: 10819322
    Abstract: An apparatus is provided that includes a frequency doubler circuit and a duty cycle adjusting circuit. The frequency doubler circuit includes a multiplexer, a variable delay circuit and a divide-by-2 circuit. The multiplexer selects one of a first and a second clock signals having opposite phases according to a selection signal to generate a frequency doubled clock signal. The variable delay circuit delays the frequency doubled clock signal. The divide-by-2 circuit divides a frequency of the frequency doubled clock signal to generate the selection signal. The duty cycle adjusting circuit includes an average voltage generation circuit and a comparison circuit. The average voltage generation circuit generates an average voltage value of the frequency doubled clock signal. The comparison circuit generates a control signal according to a comparison result of the average voltage value and a reference voltage to control the duty cycle of the frequency doubled clock signal.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: October 27, 2020
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: An-Ming Lee, Chia-Liang Lin, Yo-Hao Tu, Yu-Hsiang Chen
  • Patent number: 10812055
    Abstract: Embodiments herein disclose a flip flop comprising at least one of a slave circuit and a retention circuit receiving an input from a master circuit. The output circuit receives an input (X1) from at least one of the slave circuit and the retention circuit. A first node and a second node in the retention circuit receive a power supply from a global power supply through transistors, when a retention is 0 in the retention circuit, so that the slave circuit retains a current state of the X1 and X2 irrespective of a clock input in the slave circuit, and the output circuit receives the stored state of the retention circuit, when a local power supply is turned ON.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: October 20, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sajal Mittal, Aroma Bhat, Hareharan Nagarajan, Rahul Kataria, Abhishek Ghosh