Patents Examined by Lynne A. Gurley
  • Patent number: 9349672
    Abstract: A microelectronic package includes a lower unit having a lower unit substrate with conductive features and a top and bottom surface. The lower unit includes one or more lower unit chips overly/ing the top surface of the lower unit substrate that are electrically connected to the conductive features of the lower unit substrate. The microelectronic package also includes an upper unit including an upper unit substrate having conductive features, top and bottom surfaces and a hole extending between such top and bottom surfaces. The upper unit further includes one or more upper unit chips overlying the top surface of the upper unit substrate and electrically connected to the conductive features of the upper unit substrate by connections extending within the hole. The upper unit may include an upper unit encapsulant that covers the connections of the upper unit and the one or more upper unit chips.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: May 24, 2016
    Assignee: Tessera, Inc.
    Inventors: Ilyas Mohammed, Belgacem Haba, Sean Moran, Wei-Shun Wang, Ellis Chau, Christopher Wade
  • Patent number: 9343588
    Abstract: A normally-off JFET is provided. The normally-off JFET includes a channel region of a first conductivity type, a floating semiconductor region of a second conductivity type adjoining the channel region, and a contact region of the first conductivity type adjoining the floating semiconductor region. The floating semiconductor region is arranged between the contact region and the channel region. Further, a normally-off semiconductor switch is provided.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: May 17, 2016
    Assignee: Infineon Technologies Austria AG
    Inventor: Wolfgang Werner
  • Patent number: 9343480
    Abstract: It is an object to give excellent data retention characteristics to a semiconductor device in which stored data is judged in accordance with the potential of a gate of a specified transistor, by achieving both reduction in variation of the threshold voltage of the transistor and data retention for a long time. Charge is held (data is stored) in a node electrically connected only to a source or a drain of a transistor whose channel region is formed using an oxide semiconductor. There may be a plurality of transistors whose sources or drains are electrically connected to the node. The oxide semiconductor has a wider band gap and a lower intrinsic carrier density than silicon. By using such an oxide semiconductor for the channel region of the transistor, the transistor with an extremely low off-state current (leakage current) can be realized.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: May 17, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Seiichi Yoneda
  • Patent number: 9337047
    Abstract: One or more embodiments are related to a semiconductor device, comprising: a high-K dielectric material; and a nitrogen-doped silicon material disposed over said high-k dielectric material.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: May 10, 2016
    Assignee: Infineon Technologies AG
    Inventors: Danny Pak-Chum Shum, Ronald Kakoschke, John Power, Wolfram Langheinrich
  • Patent number: 9321632
    Abstract: A method for fabricating an integrated circuit device is disclosed. The method includes providing a first substrate; bonding a second substrate to the first substrate, the second substrate including a microeelectromechanical system (MEMS) device; and bonding a third substrate to the first substrate.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: April 26, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ting-Hau Wu
  • Patent number: 9293461
    Abstract: A stack of a barrier metal layer and a first-type work function metal layer is deposited in replacement metal gate schemes. The barrier metal layer can be deposited directly on the gate dielectric layer. The first-type work function metal layer is patterned to be present only in regions of a first type field effect transistor. A second-type work function metal layer is deposited directly on the barrier metal layer in the regions of a second type field effect transistor. Alternately, the first-type work function layer can be deposited directly on the gate dielectric layer. The barrier metal layer is patterned to be present only in regions of a first type field effect transistor. A second-type work function metal layer is deposited directly on the gate dielectric layer in the regions of the second type field effect transistor. A conductive material fill and planarization form dual work function replacement gate structures.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 22, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Unoh Kwon, Michael P. Chudzik, Ravikumar Ramachandran
  • Patent number: 9293540
    Abstract: To provide a semiconductor device which can be miniaturized or highly integrated. To obtain a semiconductor device including an oxide semiconductor, which has favorable electrical characteristics. To provide a highly reliable semiconductor device including an oxide semiconductor, by suppression of a change in its electrical characteristics. The semiconductor device includes an island-like oxide semiconductor layer over an insulating surface; an insulating layer surrounding a side surface of the oxide semiconductor layer; a source electrode layer and a drain electrode layer in contact with top surfaces of the oxide semiconductor layer and the insulating layer; a gate electrode layer overlapping with the oxide semiconductor layer; and a gate insulating layer between the oxide semiconductor layer and the gate electrode layer. The source electrode layer and the drain electrode layer are provided above the top surface of the oxide semiconductor layer. The top surface of the insulating layer is planarized.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: March 22, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9287261
    Abstract: Disclosed is a semiconductor device manufacturing method comprising: forming an element isolation region in one principal face of a semiconductor substrate of one conductivity type; forming a gate electrode extending from an element region to the element isolation region at both sides of the element region in a first direction, both end portions of the gate electrode in the first direction being on the element isolation region and respectively including a concave portion and protruding portions at both sides of the concave portion; carrying out ion implantation of impurities of the one conductivity type from a direction tilted from a direction perpendicular to the one principal face toward the first direction so that first and second impurity implantation regions of the one conductivity type are formed in the one principal face in two end regions of the element region in the first direction.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: March 15, 2016
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Eisuke Seo
  • Patent number: 9287270
    Abstract: Provided are a semiconductor device and a fabricating method thereof. The semiconductor device includes a storage electrode having a cylinder shape, a dielectric film formed on the storage electrode, and a plate electrode formed on the dielectric film, wherein the plate electrode includes a first semiconductor compound layer and a second semiconductor compound layer sequentially stacked one on the other, and the first semiconductor compound layer has a crystallinity different from that of the second semiconductor compound layer.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: March 15, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Hwan Oh, Hyun-Jun Kim, Jong-Bom Seo, Ki-Vin Im, Han-Jin Lim
  • Patent number: 9281390
    Abstract: A method of fabricating a memory device is provided that may begin with forming a layered gate stack atop a semiconductor substrate and patterning a metal electrode layer stopping on the high-k gate dielectric layer of the layered gate stack to provide a first metal gate electrode and a second metal gate electrode on the semiconductor substrate. In a next process sequence, at least one spacer is formed on the first metal gate electrode atop a portion of the high-k gate dielectric layer, wherein a remaining portion of the high-k gate dielectric is exposed. The remaining portion of the high-k gate dielectric layer is etched to provide a first high-k gate dielectric having a portion that extends beyond a sidewall of the first metal gate electrode and a second high-k gate dielectric having an edge that is aligned to a sidewall of the second metal gate electrode.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: March 8, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Chandrasekara Kothandaraman, Chengwen Pei
  • Patent number: 9263443
    Abstract: A semiconductor device includes a first semiconductor die including a normally-off transistor and a second semiconductor die including a plurality of transistor cells of a normally-on GaN HEMT. One of a source terminal and a drain terminal of the normally-off transistor is electrically coupled to a gate terminal of the normally-on GaN HEMT, and the other one of the source terminal and the drain terminal of the normally-off transistor is electrically coupled to one of a source terminal and a drain terminal of the normally-on GaN HEMT. The second semiconductor die further includes a gate resistor electrically coupled between the gate terminal of the normally-off transistor and respective gates of the plurality of transistor cells, and a voltage clamping element electrically coupled between the gate terminal and one of the source terminal and the drain terminal of the normally-on GaN HEMT.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: February 16, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Treu, Ralf Siemieniec
  • Patent number: 9250204
    Abstract: A method for forming a sensor includes forming a channel in substrate, forming a sacrificial layer in the channel, forming a sensor having a first dielectric layer disposed on the substrate, a graphene layer disposed on the first dielectric layer, and a second dielectric layer disposed on the graphene layer, a source region, a drain region, and a gate region, wherein the gate region is disposed on the sacrificial layer removing the sacrificial layer from the channel.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: February 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin, Ning Su
  • Patent number: 9245738
    Abstract: According to example embodiments, a high electron mobility transistor (HEMT) includes a channel layer; a channel supply layer on the channel layer; a source electrode and a drain electrode spaced apart from each other on one of the channel layer and the channel supply layer; a gate electrode on a part of the channel supply layer between the source electrode and the drain electrode; a first depletion-forming layer between the gate electrode and the channel supply layer; and a at least one second depletion-forming layer on the channel supply layer between the gate electrode and the drain electrode. The at least one second depletion-forming layer is electrically connected to the source electrode.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 26, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul Jeon, Jong-seob Kim, Ki-yeol Park, Young-hwan Park, Jai-kwang Shin, Jae-joon Oh, Hyuk-soon Choi, In-jun Hwang
  • Patent number: 9245957
    Abstract: According to example embodiments, a semiconductor material may include zinc, nitrogen, and fluorine. The semiconductor material may further include oxygen. The semiconductor material may include a compound. For example, the semiconductor material may include zinc fluorooxynitride. The semiconductor material may include zinc oxynitride containing fluorine. The semiconductor material may include zinc fluoronitride. The semiconductor material may be applied as a channel material of a thin film transistor (TFT).
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: January 26, 2016
    Assignees: Samsung Electronics Co., Ltd., Samsung Display Co., Ltd.
    Inventors: Tae-sang Kim, Sun-jae Kim, Hyun-suk Kim, Myung-kwan Ryu, Joon-seok Park, Seok-jun Seo, Jong-baek Seon, Kyoung-seok Son
  • Patent number: 9231058
    Abstract: A method of fabricating a single crystal gallium nitride substrate the step of cutting an ingot of single crystal gallium nitride along predetermined planes to make one or more signal crystal gallium nitride substrates. The ingot of single crystal gallium nitride is grown by vapor phase epitaxy in a direction of a predetermined axis. Each predetermined plane is inclined to the predetermined axis. Each substrate has a minor polished primary surface. The primary surface has a first area and a second area. The first area is between an edge of the substrate and a line 3 millimeter away from the edge. The first area surrounds the second area. An axis perpendicular to the primary surface forms an off-angle with c-axis of the substrate. The off-angle takes a minimum value at a first position in the first area of the primary surface.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: January 5, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Masaki Ueno
  • Patent number: 9231092
    Abstract: A vertical bidirectional switch of the type having its control referenced to the rear surface, including on its rear surface a first main electrode and on its front surface a second main electrode and a gate electrode, this switch being controllable by a positive voltage between its gate and its first electrode, wherein the gate electrode is arranged on the front surface of a via crossing the chip in which the switch is formed.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: January 5, 2016
    Assignee: STMICROELECTRONICS (TOURS) SAS
    Inventor: Samuel Menard
  • Patent number: 9218964
    Abstract: Methods of manufacturing a III-V compound semiconductor material, and the semiconductor material thus manufactured, are disclosed. In one embodiment, the method comprises providing a substrate comprising a first semiconductor material having a {001} orientation and an insulating layer overlaying the first semiconductor material. The insulating layer comprises a recessed region exposing an exposed region of the first semiconductor material. The method further comprises forming a buffer layer overlaying the exposed region that comprises a group IV semiconductor material. The method further comprises thermally annealing the substrate and the buffer layer, thereby roughening the buffer layer to create a rounded, double-stepped surface having a step density and a step height. A product of the step density and the step height is greater than or equal to 0.05 on the surface.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: December 22, 2015
    Assignees: IMEC, Katholieke Universiteit Leuven, KU Leuven R&D
    Inventors: Gang Wang, Matty Caymax, Maarten Leys, Wei-e Wang, Niamh Waldron
  • Patent number: 9214443
    Abstract: The present invention provides a eutectic solder structure for a chip including a substrate and a solder structure on the substrate. The solder structure includes an alternate lamination of a plurality of first metal layers and a plurality of second metal layers, wherein each second metal layer has a continuous region and a plurality of openings and the melting point of the plurality of second metal layers is higher than that of the plurality of first metal layers. The eutectic solder structure for a chip also includes a chip on the solder structure, wherein the chip is bonded to the substrate by a eutectic reaction of the solder structure.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: December 15, 2015
    Assignee: Lextar Electronics Corporation
    Inventor: Yi-Jyun Chen
  • Patent number: 9209091
    Abstract: A semiconductor device is described that includes a first electrical circuit and a second electrical circuit formed on a semiconductor on insulator wafer. The semiconductor on insulator wafer has a layer of semiconducting material formed over a buried layer of insulating material formed over a supporting layer of material. A wide deep trench is formed in the semiconductor on insulator wafer to galvanically isolate the first electrical circuit from the second electrical circuit. The first electrical circuit and the second electrical circuit are coupled together for exchanging energy between the galvanically isolated electrical circuits.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: December 8, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: David Harper, Sudarsan Uppili, Fanling Hsu Yang, David L. Snyder, Christopher S. Blair, Guillaume Bouche
  • Patent number: 9190495
    Abstract: A recessed channel array transistor may include a substrate, a gate oxide layer, a gate electrode and source/drain regions. The substrate may have an active region and an isolation region. A recess may be formed in the active region. The gate oxide layer may be formed on the recess and the substrate. The gate oxide layer may include a first portion on an intersection between a side end of the recess and a sidewall of the active region and a second portion on a side surface of the recess. The first portion may include a thickness greater than about 70% of a thickness of the second portion. The gate electrode may be formed on the gate oxide layer. The source/drain regions may be formed in the substrate. Thus, the recessed channel array transistor may have a decreased leakage current and an increased on-current.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: November 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Do Ryu, Dong-Chan Kim, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Jong-Ryeol Yoo, Jong-Hoon Kang