Patents Examined by M. Wilczewski
  • Patent number: 7573105
    Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 11, 2009
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chen
  • Patent number: 7572705
    Abstract: A semiconductor device is disclosed having a conductive gate structure overlying a semiconductor layer having a major surface. An isolation material is recessed within a trench region below the major surface of the semiconductor layer. An epitaxial layer is formed overlying a portion of the major surface and on an active region forming a sidewall of the trench.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: August 11, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Paul R. Besser, Scott D. Luning
  • Patent number: 7569414
    Abstract: A CMOS imager and non-volatile memory are integrated on a single substrate along with logic and support circuitry for decoding and processing optical information received by the CMOS imager. A protective layer covers the non-volatile memory contained on the substrate for blocking light received by the CMOS imager. The protective layer can be a metal layer used as an interconnect over other areas of the substrate or an opaque layer provided during the fabrication process. Integrating a CMOS imager, non-volatile memory and peripheral circuitry for decoding and processing optical information received by the CMOS imager allows for a single chip image sensing device, such as a digital camera.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: August 4, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Christophe J. Chevallier
  • Patent number: 7569856
    Abstract: A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: August 4, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Akira Sugawara, Yukiko Uehara, Hongyong Zhang, Atsunori Suzuki, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi, Yasuhiko Takemura
  • Patent number: 7566583
    Abstract: A method of determining adhesion quality and apparatus embodying the method are disclosed. The apparatus includes a substrate, a seed layer, and a resonator. The substrate defines a cavity and has a doped portion proximal to the cavity. The seed layer is disposed above the cavity. The resonator includes a bottom electrode on the seed layer, a piezoelectric portion on the bottom electrode, and a top electrode on the piezoelectric portion. To test the quality of adhesion of the seed layer to the substrate, one or more electrical property is measured between the doped portion and the bottom electrode and compared to a threshold value.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: July 28, 2009
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventor: Joel A. Philliber
  • Patent number: 7563627
    Abstract: A method of manufacturing a thin film transistor array substrate to prevent damage to a pad is disclosed. The method includes forming gate lines and data lines that cross each other on a lower substrate, a gate insulating film located between the gate and data lines, a thin film transistor formed at every crossing, a lower gate pad electrode connected to the gate, and a lower data pad electrode; forming a passivation film on the substrate provided with the gate insulating film; forming a photo-resist pattern on the substrate provided with the passivation film; forming a first hole passing through a portion of the passivation film and a portion of the gate insulating film; removing the photo-resist pattern; forming a second hole exposing the lower gate pad electrode; and forming a transparent electrode pattern including an upper gate pad electrode connected to the exposed lower gate pad electrode.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 21, 2009
    Assignee: LG Display Co., Ltd.
    Inventors: Yong Jin Cho, Jung Il Lee
  • Patent number: 7563629
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: July 21, 2009
    Assignee: LG Electronics Inc.
    Inventors: Jong-Lam Lee, In-Kwon Jeong, Myung Cheol Yoo
  • Patent number: 7560783
    Abstract: The present invention relates to a metal-semiconductor contact comprising a semiconductor layer and comprising a metallization applied to the semiconductor layer, a high dopant concentration being introduced into the semiconductor layer such that a non-reactive metal-semiconductor contact is formed between the metallization and the semiconductor layer. The metallization and/or the semiconductor layer are formed in such a way that only a fraction of the introduced doping concentration is electrically active, and a semiconductor layer doped only with this fraction of the doping concentration only forms a Schottky contact when contact is made with the metallization. Furthermore, the invention relates to a semiconductor component comprising a drain zone, body zones embedded therein and source zones again embedded therein. The semiconductor component has metal-semiconductor contacts in which the contacts made contact only with the source zones but not with the body zones.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: July 14, 2009
    Assignee: Infineon Technologies AG
    Inventors: Holger Kapels, Anton Mauder, Hans-Joachim Schulze, Helmut Strack, Jenoe Tihanyi
  • Patent number: 7560367
    Abstract: In this invention, a wafer is placed and kept in the low-temperature region at the bottom of a temperature space that is in a state of radiation equilibrium and that is formed inside chamber by a heating unit. The substrate temperature is gradually raised to a temperature ranging from 750° C. to 800° C. Next, the wafer is placed and kept in the high-temperature region in the temperature space and the substrate temperature is raised to the thermal processing temperature. Then thermal processing is performed for a specified period of time. By doing this, it is possible to perform uniform thermal processing without depending on the state of the wafer (ratio of an area covered by silicon nitride film or polysilicon film).
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: July 14, 2009
    Assignee: Panasonic Corporation
    Inventors: Fumitoshi Kawase, Satoshi Shibata
  • Patent number: 7557018
    Abstract: A substrate used for fabricating devices thereon includes an insulating film, and a monocrystal Ge thin layer formed on the insulating film in contact therewith, the monocrystal Ge thin layer having a thickness not more than 6 nm. The monocrystal Ge thin layer has a thickness not less than 2 nm and a compressive strain.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: July 7, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shu Nakaharai, Tsutomu Tezuka, Shinichi Takagi
  • Patent number: 7553723
    Abstract: A method of manufacturing a memory device. The memory device comprises a trench in a substrate, a capacitor at the low portion of the trench, a collar dielectric layer overlying the capacitor and covering a portion of the sidewall of the trench, and a conductive layer filling a portion of the trench over the capacitor. First, a first mask layer is formed on the conductive layer, wherein a bottom portion of the first mask layer is thicker than the side portion thereof in the trench. A second mask layer is formed on the first mask layer. Next, a portion of the second mask layer in the trench is ion implanted. The unimplanted portion of the second mask layer is removed.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: June 30, 2009
    Assignee: Nanya Technology Corporation
    Inventor: Cheng-Chih Huang
  • Patent number: 7554136
    Abstract: A micro device that is manufactured by semiconductor process and is electrically connected to outside for its operation. The micro device includes a circuit board, an electrode pad being provided on the circuit board, a lead substrate being provided substantially parallel to the circuit board, and a lead of conductive member being electrically connected to the electrode pad by being bent in a direction away from a surface of the lead substrate, one end of the lead being adhered to the lead substrate and the other end being a free end.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: June 30, 2009
    Assignee: Advantest Corporation
    Inventors: Fumikazu Takayanagi, Yoshiaki Moro, Hirokazu Sanpei
  • Patent number: 7554142
    Abstract: The invention provides an imager having a p-n-p photodiode with an ultrashallow junction depth. A p+ junction layer of the photodiode is doped with indium to decrease transient enhanced diffusion effects, minimize fixed pattern noise and fill factor loss.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: June 30, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 7553738
    Abstract: A microelectronic device, a method of fabricating the device, and a system including the device. The method includes: providing a substrate including an underlying conductive layer and a polymer build-up layer overlying the underlying conductive layer; providing a passive microelectronic structure; embedding the passive structure in the polymer build-up layer of the substrate; and patterning the passive structure after embedding, patterning including over-etching the bottom electrode layer. The passive microelectronic structure being embedded includes an unpatterned bottom electrode layer; an unpatterned capacitor dielectric layer overlying the bottom electrode layer; and an unpatterned top electrode layer overlying the capacitor dielectric layer.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: June 30, 2009
    Assignee: Intel Corporation
    Inventors: Yongki Min, Huankiat Seh
  • Patent number: 7553713
    Abstract: A semiconductor substrate includes a semiconductor base substrate that has an oxide film selectively formed on a part thereof, the oxide film having a non-uniform thickness; and a semiconductor layer that is formed on the oxide film by epitaxial growth so as to have a non-uniform thickness.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: June 30, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Toshiki Hara
  • Patent number: 7547561
    Abstract: An advanced process control (APC) architecture comprising a process model that incorporates a target offset term is provided. The APC architecture may be applied to a so-called develop inspect critical dimension (DICD) model using the target offset term to correct at least one exposure parameter on the occurrence of an abrupt event. A corresponding event may, for example, concern a modified reflectivity of processed substrates, for example due to a rework of substrates covered by amorphous carbon material.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: June 16, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Schulze, Martin Mazur, Andreas Becker
  • Patent number: 7547964
    Abstract: A semiconductor device package includes a die pad, a substrate disposed on the die pad, and a III-nitride based semiconductor device disposed on the substrate. The device package may also include a second semiconductor device disposed on the die pad or the substrate, which device may be electrically connected to the III-nitride based device to form a circuit.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: June 16, 2009
    Assignee: International Rectifier Corporation
    Inventors: Mark Pavier, Norman Glyn Connah
  • Patent number: 7548571
    Abstract: A method of fabrication of laser gain material and utilization of such media includes the steps of introducing a transitional metal, preferably Cr2+ thin film of controllable thickness on the ZnS crystal facets after crystal growth by means of pulse laser deposition or plasma sputtering, thermal annealing of the crystals for effective thermal diffusion of the dopant into the crystal volume with a temperature and exposition time providing the highest concentration of the dopant in the volume without degrading laser performance due to scattering and concentration quenching, and formation of a microchip laser either by means of direct deposition of mirrors on flat and parallel polished facets of a thin Cr:ZnS wafer or by relying on the internal reflectance of such facets.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: June 16, 2009
    Assignee: The UAB Research Foundation
    Inventors: Sergey B. Mirov, Vladimir V. Federov
  • Patent number: 7545012
    Abstract: A capacitive micromachined ultrasound transducer (cMUT) cell is presented. The cMUT cell includes a lower electrode. Furthermore, the cMUT cell includes a diaphragm disposed adjacent to the lower electrode such that a gap having a first gap width is formed between the diaphragm and the lower electrode, wherein the diaphragm comprises one of a first epitaxial layer or a first polysilicon layer. In addition, a stress reducing material is disposed in the first epitaxial layer.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: June 9, 2009
    Assignee: General Electric Company
    Inventors: Lowell Scott Smith, David Martin Mills, Jeffrey Bernard Fortin, Wei-Cheng Tian, John Robert Logan
  • Patent number: 7544619
    Abstract: An insulating film is formed on a main surface of a substrate. A conductive film is formed on the insulating film. A lower layer resist film, an intermediate layer, an anti-reflection film and an upper layer resist film are formed on the conductive film. A focal point at a time of exposure is detected by detecting a height of the upper layer resist film. In detecting the focal point at the time of exposure, a focal point detection light is radiated on the upper layer resist film. After detecting the focal point, the upper layer resist film is exposed and developed thereby to form a resist pattern. With the resist pattern as a mask, the intermediate layer and the anti-reflection film are patterned, and the lower layer resist film is developed. With these patterns as a mask, the conductive film is etched thereby to form a gate electrode.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: June 9, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Takeo Ishibashi