Patents Examined by M. Wilczewski
  • Patent number: 7605016
    Abstract: Disclosed are a CMOS sensor and a method of fabricating the CMOS sensor. The method includes the steps of: forming a first USG layer on an entire surface of a semiconductor substrate including a cell area and a scribe area; masking the cell area, and then removing the first USG layer formed on the scribe area; forming a SiN layer on the entire surface of the semiconductor substrate; masking the cell area, and then removing the SiN layer formed on the scribe area; forming a second USG layer on the entire surface of the semiconductor substrate; and masking the scribe area, and then removing the second USG layer formed on the cell area. The USG layer is only formed on the scribe layer without the SiN layer, so that SiN particles do not drop onto the USG layer during the sintering process.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: October 20, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Dae Hong Min
  • Patent number: 7605025
    Abstract: A Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) can be formed by growing an epitaxial semiconductor layer on an upper surface of a sacrificial crystalline structure and on a substrate to form a buried sacrificial structure. The buried sacrificial structure can be removed to form a void in place of the buried sacrificial structure and a device isolation layer can be formed in the void.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: October 20, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min-sang Kim, Chang-woo Oh, Dong-won Kim, Kyoung-hwan Yeo, Sung-min Kim
  • Patent number: 7605443
    Abstract: The present invention relates to a method of manufacturing a semiconductor substrate, which enables a semiconductor device to have high speed operating characteristics and high performance characteristics such as lower electrical power consumption, and a method of manufacturing a semiconductor device including a method of manufacturing the semiconductor substrate thereof in a process, as well as to a semiconductor substrate manufactured by the method of manufacturing the same and a semiconductor device manufactured using the semiconductor substrate.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: October 20, 2009
    Assignee: NEC Corporation
    Inventor: Atsushi Ogura
  • Patent number: 7605033
    Abstract: Methods for forming memory devices and integrated circuitry, for example, DRAM circuitry, structures and devices resulting from such methods, and systems that incorporate the devices are provided. In some embodiments, the method includes forming a metallized contact to an active area in a silicon substrate in a peripheral circuitry area and a metallized contact to a polysilicon plug in a memory cell array area by forming a first opening to expose the active area at the peripheral circuitry area, chemical vapor depositing a titanium layer over the dielectric layer and into the first opening to form a titanium silicide layer over the active area in the silicon substrate, removing the titanium layer selective to the titanium silicide layer, forming a second opening in the dielectric layer to expose the polysilicon plug at the memory cell array area, and forming metal contacts within the first and second openings to the active area and the exposed polysilicon plug.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: October 20, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Terrence McDaniel, Sandra Tagg, Fred Fishburn
  • Patent number: 7602024
    Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 13, 2009
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chen
  • Patent number: 7602008
    Abstract: Non-volatile memory devices and methods for fabricating non-volatile memory devices are disclosed. More specifically, split gate memory devices are provided having frameworks that provide increased floating gate coupling ratios, thereby enabling enhanced programming and erasing efficiency and performance.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Taeg Kang, Hyok-Ki Kwon, Bo Young Seo, Seung Beom Yoon, Hee Seog Jeon, Yong-Suk Choi, Jeong-Uk Han
  • Patent number: 7601602
    Abstract: An on-chip, ultra-compact, and programmable semiconductor resistor device and device structure and a method of fabrication. Each semiconductor resistor device structure is formed of one or more conductively connected buried trench type resistor elements exhibiting a precise resistor value. At least two semiconductor resistor device structures may be connected in series or in parallel configuration through the intermediary of one or more fuse devices that may be blown to achieve a desired total resistance value.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: October 13, 2009
    Assignee: International Business Machines Corporation
    Inventors: John M. Aitken, Fen Chen, Timothy D. Sullivan
  • Patent number: 7601637
    Abstract: Apparatus and methods of fabricating an atomic layer deposited tantalum containing adhesion layer within at least one dielectric material in the formation of a metal, wherein the atomic layer deposition tantalum containing adhesion layer is sufficiently thin to minimize contact resistance and maximize the total cross-sectional area of metal, including but not limited to tungsten, within the contact.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: October 13, 2009
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Kerry Spurgin, Brennan L. Peterson
  • Patent number: 7602023
    Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 13, 2009
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chen
  • Patent number: 7598113
    Abstract: A phase change memory device and fabricating method are provided. A disk-shaped phase change layer is buried within the insulating material. A center via and ring via are formed by a lithography. The center via is located in the center of the phase change layer and passes through the phase change layer, and the ring via takes the center via as a center. A heating electrode within the center via performs Joule heating of the phase change layer, and the contact area between the phase change layer and the heating electrode is reduced by controlling the thickness of the phase change layer. Furthermore, a second electrode within the ring via dissipates the heat transmitted to the contact interface between the phase change layers, so as to avoid transmitting the heat to the etching boundary at the periphery of the phase change layer.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: October 6, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-Su Chen, Yi-Chan Chen, Wen-Han Wang, Hong-Hui Hsu, Chien-Min Lee, Yen Chuo, Te-Sheng Chao, Min-Hung Lee
  • Patent number: 7598554
    Abstract: A complementary metal-oxide semiconductor (CMOS) image sensor and a method for fabricating the same are disclosed. The image sensor includes a sub-layer having a photodiode and a plurality of transistors formed thereon, a pad insulating layer formed on the sub-layer, a micro-lens formed on the pad insulating layer, the micro-lens including a first insulating layer having an uneven surface and a second insulating layer covering upper and side surfaces of a projected portion of the first insulating layer to form a dome shape, and a planarization layer formed on the micro-lens, and a color filter formed on the planarization layer.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: October 6, 2009
    Assignee: DongbuAnam Semiconductor Inc.
    Inventor: In Su Kim
  • Patent number: 7598134
    Abstract: A memory device includes an array of memory cells and peripheral devices. At least some of the individual memory cells include carbonated portions that contain SiC. At least some of the peripheral devices do not include any carbonated portions. A transistor includes a first source/drain, a second source/drain, a channel including a carbonated portion of a semiconductive substrate that contains SiC between the first and second sources/drains and a gate operationally associated with opposing sides of the channel.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: October 6, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 7592216
    Abstract: A method of manufacturing a semiconductor device includes forming a first trench in a capacitor device region of a semiconductor substrate, forming a capacitor insulation film over a sidewall surface of the first trench, forming a semiconductor film to cover the first trench, a resistor device region of the semiconductor substrate and a logic device region of the semiconductor substrate, introducing a first impurity element into the semiconductor film formed over the first trench, patterning the semiconductor film to form a top electrode in the capacitor device region, a resistor in the resistor device region and a gate electrode in the logic device region, annealing the semiconductor substrate, and introducing a second impurity element in the resistor.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: September 22, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Jun Lin, Hiroyuki Ogawa, Hideyuki Kojima
  • Patent number: 7589375
    Abstract: A non-volatile memory device includes a semiconductor substrate including a cell array region and a peripheral circuit region. A first cell unit is on the semiconductor substrate in the cell array region, and a cell insulating layer is on the first cell unit. A first active body layer is in the cell insulating layer and over the first cell unit, and a second cell unit is on the first active body layer. The device further includes a peripheral transistor on the semiconductor substrate in the peripheral circuit region. The peripheral transistor has a gate pattern and source/drain regions, and a metal silicide layer is on the gate pattern and/or on the source/drain regions of the peripheral transistor. A peripheral insulating layer is on the metal silicide layer and the peripheral transistor, and an etching protection layer is between the cell insulating layer and the peripheral insulating layer and between the metal silicide layer and the peripheral insulating layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Jong-Hyuk Kim, Young-Seop Rah, Han-Byung Park
  • Patent number: 7585715
    Abstract: A semiconductor device comprising at least two thin film transistors on a substrate having an insulating surface thereon, provided that the thin film transistors are isolated by oxidizing the outer periphery of the active layer of each of the thin film transistors to the bottom to provide an oxide insulating film.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: September 8, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuhiko Takemura, Hiroki Adachi
  • Patent number: 7582542
    Abstract: A die attaching method for attaching semiconductor dies on wafers, each wafer having a first center point and a first radius may include expanding a wafer carrier tape so that the wafer has a second center point and a second radius, measuring the second center point and second radius of the wafer, adding the difference between the first radius and the second radius to a first coordinate value of a first die to calculate a second coordinate value of the first die, and picking up and attaching the semiconductor dies consecutively from the first die. Calculating the second coordinate value of the first die may include compensating the first center point of the wafer based on the second center point of the wafer to calculate the positional coordinate of the semiconductor dies including the first die.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: September 1, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Young Kim, Joung-Min Oh
  • Patent number: 7579682
    Abstract: A power semiconductor module has a ceramic substrate (9) which has on at least one side a patterned metallization (50) with a fineness of pattern of smaller than or equal to 800 ?m, a first semiconductor chip (10) which has a power semiconductor component and which is arranged on the patterned metallization (50), and a second semiconductor chip (30) which has drive electronics for driving the first semiconductor chip (10) and which is arranged on the patterned metallization (50). Furthermore, at least one thin-wire bond (2, 3) with a bonding-wire diameter (d2, d3) of smaller than or equal to 75 ?m is provided which is formed between the patterned metallization (50) and the second semiconductor chip (30).
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 25, 2009
    Assignee: Infineon Technologies AG
    Inventor: Martin Hierholzer
  • Patent number: 7579633
    Abstract: A photoelectric conversion device includes a photoelectric conversion layer that is stacked on a semiconductor substrate and that has first, second, and third photoelectric conversion regions, and first, second, and third dividing regions. The first dividing region is formed at a predetermined depth from a surface of the photoelectric conversion layer in the first photoelectric conversion region, and divides the first photoelectric conversion region into a first surface side region closer to the surface thereof and a first substrate side region closer to the semiconductor substrate. The first dividing region has a through hole. The second dividing region is formed at substantially the same depth as the first dividing region or at a shallower depth than the first dividing region in the second photoelectric conversion region. The third dividing region is formed at a shallower depth than the second dividing region in the third photoelectric conversion region.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: August 25, 2009
    Assignee: Rohm Co., Ltd.
    Inventor: Yushi Sekiguchi
  • Patent number: 7572683
    Abstract: A semiconductor device is disclosed that reduces the reverse leakage current caused by reverse bias voltage application and reduces the on-voltage of the IGBT. A two-way switching device using the semiconductor devices is provided, and a method of manufacturing the semiconductor device is disclosed. The reverse blocking IGBT reduces the reverse leakage current and the on-voltage by bringing portions of an n?-type drift region 1 that extend between p-type base regions and an emitter electrode into Schottky contact to form Schottky junctions.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: August 11, 2009
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Manabu Takei, Tatsuya Naito, Michio Nemoto
  • Patent number: 7572682
    Abstract: A fuse/anti-fuse structure is provided in which programming of the anti-fuse is caused by an electromigation induced hillock that is formed adjacent to the fuse element. The hillock ruptures a thin diffusion barrier located on the sidewalls of the fuse element and the conductive material within the fuse element diffuses into the adjacent dielectric material. The fuse element includes a conductive material located within a line opening which includes a first diffusion barrier having a first thickness located on sidewalls and a bottom wall of the line opening. The anti-fuse element includes the conductive material located within a combined via and line opening which includes the first diffusion barrier located on sidewalls and a bottom wall of the combined via and line opening and a second diffusion barrier having a second thickness that is greater than the first thickness located on the first diffusion barrier.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: August 11, 2009
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Daniel C. Edelstein, Jack A. Mandelman, Louis L. Hsu