Patents Examined by Matthew E. Warren
  • Patent number: 11716857
    Abstract: A semiconductor memory device includes a stack of alternating insulating layers and first conductive layers disposed over a substrate; a plurality of memory cell strings penetrating the stack over the substrate, each memory cell string comprising a central portion extending through the stack, a semiconductor layer surrounding the central portion, and a ferroelectric layer surrounding the semiconductor layer, and the central portion comprising a channel isolation structure and a second conductive layer and a third conductive layer at two sides of the channel isolation structure; and a plurality of cell isolation structures penetrating the conductive layers and the insulating layers over the substrate and disposed between two memory cell strings, each cell isolation structure comprising a top portion and a bottom portion adjoined to the top portion and different from the top portion.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Chien Chiu, Meng-Han Lin, Chun-Fu Cheng, Han-Jong Chia, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11716855
    Abstract: In an embodiment, a device includes: a pair of dielectric layers; a word line between the dielectric layers, sidewalls of the dielectric layers being recessed from a sidewall of the word line; a tunneling strip on a top surface of the word line, the sidewall of the word line, a bottom surface of the word line, and the sidewalls of the dielectric layers; a semiconductor strip on the tunneling strip; a bit line contacting a sidewall of the semiconductor strip; and a source line contacting the sidewall of the semiconductor strip.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia Yu Ling, Chung-Te Lin, Katherine H. Chiang
  • Patent number: 11705441
    Abstract: A micro LED display device including a display substrate, a plurality of conductive pad pairs and a plurality of micro light emitting elements is provided. The display substrate has a first arranging area, a splicing area connected to the first arranging area, and a second arranging area connected to the splicing area, wherein the splicing area is located between the first arranging area and the second arranging area. The conductive pad pairs are disposed on the display substrate in an array with the same pitch. The micro light emitting elements are disposed on the display substrate and are electrically bonded to the conductive pad pairs. A manufacturing method of the micro LED display device is also provided.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: July 18, 2023
    Assignee: PlayNitride Display Co., Ltd.
    Inventors: Sheng-Yuan Sun, Ying-Tsang Liu, Yi-Ching Chen, Pei-Hsin Chen, Yi-Chun Shih, Tzu-Yang Lin, Yu-Hung Lai
  • Patent number: 11705387
    Abstract: A semiconductor package assembly includes a carrier with a die attach surface and a contact pad separated from the die attach surface, a semiconductor die mounted on the die attach surface, the semiconductor die having a front side metallization that faces away from the die attach surface, an interconnect ribbon attached to the semiconductor die and the contact pad such that the interconnect ribbon electrically connects the front side metallization to the contact pad, and an electrically insulating encapsulant body that encapsulates the semiconductor die and at least part of the interconnect ribbon. The interconnect ribbon includes a layer stack of a first metal layer and a second layer formed on top of the first metal layer. The first metal layer includes a different metal as the second metal layer. The first metal layer faces the front side metallization.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: July 18, 2023
    Assignee: Infineon Technologies AG
    Inventors: Emil Lamco Jocson, Mohd Kahar Bajuri, Ryan Tordillo Comadre
  • Patent number: 11699624
    Abstract: The present disclosure provides a semiconductor structure having a test structure. The semiconductor structure includes a semiconductor substrate, a memory device and a test structure. The memory device is disposed on the semiconductor substrate, and includes a device area and an edge area. The edge area surrounds the device area. The test structure is disposed on the semiconductor substrate, and includes a dummy area, a test edge area and a plurality of unit cells. The test edge area surrounds the dummy area. The plurality of unit cells are disposed in the test edge area, and the dummy area is free of the unit cells. A dimension of the test edge area in a top view is different from a dimension of the edge area in the top view.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: July 11, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Tsang-Po Yang, Jui-Hsiu Jao
  • Patent number: 11696449
    Abstract: A semiconductor die comprises a device portion comprising: an array of active memory devices extending in a first direction, and interface portions located adjacent to axial ends of the device portion in the first direction. The interface portions have a staircase profile in a vertical direction and comprise an array of dummy memory devices and an array of gate vias. The dummy memory devices are axially aligned with the active memory devices in the first direction, each dummy memory device comprising at least one interface via. Moreover, each row of the array of gate vias extends in the first direction and is located parallel to a row of the array of dummy memory devices in a second direction perpendicular to the first direction. Each gate via is electrically coupled to the at least one interface via of a dummy memory device located adjacent thereto.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Han Lin, Chia-En Huang
  • Patent number: 11694924
    Abstract: A device includes an isolation structure, a source/drain epi-layer, a contact, a first dielectric layer, and a second dielectric layer. The isolation structure is embedded in a substrate. The source/drain epi-layer is embedded in the substrate and is in contact with the isolation structure. The contact is over the source/drain epi-layer. The first dielectric layer wraps the contact. The second dielectric layer is between the contact and the first dielectric layer. The first and second dielectric layers include different materials, and a portion of the source/drain epi-layer is directly between a bottom portion of the second dielectric layer and a top portion of the isolation structure.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Jia Hsieh, Long-Jie Hong, Chih-Lin Wang, Kang-Min Kuo
  • Patent number: 11690213
    Abstract: A semiconductor device includes a gate structure on a substrate, first and second spacer structures on first and second sidewalls, respectively, opposite to each other of the gate structure, and first and second source/drain layers at upper portions of the substrate adjacent to the first and second sidewalls, respectively, of the gate structure. An upper surface of the gate structure has a height with reference to an upper surface of the substrate being a base level decreasing from a central portion to the first sidewall and substantially constant from the central portion to the second sidewall.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: June 27, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dongkyun Lim, Youngsin Kim, Kijin Park, Hoju Song, Dongkwan Yang, Sangho Yun, Gyuhyun Lee, Jieun Lee, Seunguk Han, Yoongi Hong
  • Patent number: 11676931
    Abstract: A semiconductor package according to an embodiment of the present invention Includes: a lead frame comprising a pad and a lead spaced apart from the pad by a regular interval; a semiconductor chip adhered on the pad; and a clip structure electrically connecting the semiconductor chip and the lead, wherein an one end of the clip structure connected to the semiconductor chip inclines with respect to upper surfaces of chip pads of the semiconductor chip and is adhered to the upper surfaces of the chip pads of the semiconductor chip. A semiconductor package according to another embodiment of the present invention includes: a semiconductor chip comprising one or more chip pads; one or more leads electrically connected to the chip pads; and a sealing member covering the semiconductor chip, wherein an one end of the lead inclines with respect to one surface of the chip pad and is adhered to the chip pad and an other end of the lead is exposed to the outside of the sealing member.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: June 13, 2023
    Assignee: JMJ Korea Co., Ltd.
    Inventors: Yun Hwa Choi, Jeonghun Cho, Young Hun Kim, Taeheon Lee
  • Patent number: 11670553
    Abstract: The present disclosure describes a method for forming gate stack layers with a fluorine concentration up to about 35 at. %. The method includes forming dielectric stack, barrier layer and soaking the dielectric stack and/or barrier layer in a fluorine-based gas. The method further includes depositing one or more work function layers on the high-k dielectric layer, and soaking at least one of the one or more work function layers in the fluorine-based gas. The method also includes optional fluorine drive in annealing process, together with sacrificial blocking layer to avoid fluorine out diffusion and loss into atmosphere.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chandrashekhar Prakash Savant, Chia-Ming Tsai, Ming-Te Chen, Shih-Chi Lin, Zack Chong, Tien-Wei Yu
  • Patent number: 11664320
    Abstract: Embodiments that allow both high density and low density interconnection between microelectronic die and motherboard via. Direct Chip Attach (DCA) are described. In some embodiments, microelectronic die have a high density interconnect with a small bump pitch located along one edge and a lower density connection region with a larger bump pitch located in other regions of the die. The high density interconnect regions between die are interconnected using an interconnecting bridge made out of a material that can support high density interconnect manufactured into it, such as silicon. The lower density connection regions are used to attach interconnected die directly to a board using DCA. The high density interconnect can utilize current Controlled Collapsed Chip Connection (C4) spacing when interconnecting die with an interconnecting bridge, while allowing much larger spacing on circuit boards.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: May 30, 2023
    Assignee: Tahoe Research, Ltd.
    Inventors: Mihir K Roy, Mathew J Manusharow
  • Patent number: 11659706
    Abstract: A method for fabricating a semiconductor device, including the steps of: providing a substrate comprising a preliminary pattern formed thereon; forming an opening through the preliminary pattern to expose a conductive portion in the substrate; forming a spacer on a sidewall of the opening; performing a wet etching process to form a hole in the conductive portion; removing the spacer; and depositing a conductive pattern over the sidewall of the opening and a surface of the hole.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: May 23, 2023
    Assignee: XIA TAI XIN SEMICONDUCTOR (QING DAO) LTD.
    Inventors: Chang-Hyeon Nam, Injoon Yeo
  • Patent number: 11658224
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a source/drain region arranged within a substrate. A first select gate is arranged over the substrate, and a first memory gate is arranged over the substrate and separated from the source/drain region by the first select gate. An inter-gate dielectric structure is arranged between the first memory gate and the first select gate. The inter-gate dielectric structure extends under the first memory gate. A height of the inter-gate dielectric structure decreases along a direction extending from the first select gate to the first memory gate.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: May 23, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ming Wu, Wei Cheng Wu, Shih-Chang Liu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai
  • Patent number: 11653500
    Abstract: A memory cell includes a transistor including a memory film extending along a word line; a channel layer extending along the memory film, wherein the memory film is between the channel layer and the word line; a source line extending along the memory film, wherein the memory film is between the source line and the word line; a first contact layer on the source line, wherein the first contact layer contacts the channel layer and the memory film; a bit line extending along the memory film, wherein the memory film is between the bit line and the word line; a second contact layer on the bit line, wherein the second contact layer contacts the channel layer and the memory film; and an isolation region between the source line and the bit line.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu Chang, Meng-Han Lin, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin
  • Patent number: 11653501
    Abstract: A ferroelectric memory device, a manufacturing method of the ferroelectric memory device and a semiconductor chip are provided. The ferroelectric memory device includes a gate electrode, a ferroelectric layer, a channel layer, first and second blocking layers, and source/drain electrodes. The ferroelectric layer is disposed at a side of the gate electrode. The channel layer is capacitively coupled to the gate electrode through the ferroelectric layer. The first and second blocking layers are disposed between the ferroelectric layer and the channel layer. The second blocking layer is disposed between the first blocking layer and the channel layer. The first and second blocking layers comprise a same material, and the second blocking layer is further incorporated with nitrogen. The source/drain electrodes are disposed at opposite sides of the gate electrode, and electrically connected to the channel layer.
    Type: Grant
    Filed: June 20, 2021
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Rainer Yen-Chieh Huang, Hai-Ching Chen, Yu-Ming Lin, Chung-Te Lin
  • Patent number: 11647635
    Abstract: A device includes a multi-layer stack, a channel layer, a ferroelectric layer and buffer layers. The multi-layer stack is disposed on a substrate and includes a plurality of conductive layers and a plurality of dielectric layers stacked alternately. The channel layer penetrates through the plurality of conductive layers and the plurality of dielectric layers. The ferroelectric layer is disposed between the channel layer and each of the plurality of conductive layers and the plurality of dielectric layers. The buffer layers include a metal oxide, and one of the buffer layers is disposed between the ferroelectric layer and each of the plurality of dielectric layers.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 9, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Georgios Vellianitis, Marcus Johannes Henricus Van Dal, Sai-Hooi Yeong, Yu-Ming Lin
  • Patent number: 11647637
    Abstract: A semiconductor device comprises a source and a pair of drains disposed on either side of the source in a first direction and spaced apart therefrom. A channel layer extending in the first direction is disposed on at least one radially outer surface of the source and the pair of drains in a second direction perpendicular to the first direction. A memory layer extending in the first direction is disposed on a radially outer surface of the channel layer in the second direction. At least one gate layer that extends in the first direction, is disposed on a radially outer surface of the memory layer in the second direction. A gate extension structure extends from the each of the drains at least part way towards the source in the first direction, and is located proximate to, and in contact with each of the channel layer and the corresponding drain.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: May 9, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Han Lin, Chia-En Huang
  • Patent number: 11646375
    Abstract: Provided is a ferroelectric thin-film structure including a semiconductor substrate, a first ferroelectric layer on the semiconductor substrate, and a second ferroelectric layer on the semiconductor substrate. The second ferroelectric layer is spaced apart from the first ferroelectric layer and has a different dielectric constant from the first ferroelectric layer. The first ferroelectric layer and the second ferroelectric layer may be different from each other in terms of the amount of a dopant contained therein, and may exhibit different threshold voltages when applied to transistors.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: May 9, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yunseong Lee, Jinseong Heo, Sangwook Kim, Taehwan Moon, Sanghyun Jo
  • Patent number: 11637021
    Abstract: The current disclosure describes techniques of protecting a metal interconnect structure from being damaged by subsequent chemical mechanical polishing processes used for forming other metal structures over the metal interconnect structure. The metal interconnect structure is receded to form a recess between the metal interconnect structure and the surrounding dielectric layer. A metal cap structure is formed within the recess. An upper portion of the dielectric layer is strained to include a tensile stress which expands the dielectric layer against the metal cap structure to reduce or eliminate a gap in the interface between the metal cap structure and the dielectric layer.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 25, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Sheng Lin, Chi-Jen Liu, Chi-Hsiang Shen, Te-Ming Kung, Chun-Wei Hsu, Chia-Wei Ho, Yang-Chun Cheng, William Weilun Hong, Liang-Guang Chen, Kei-Wei Chen
  • Patent number: 11637126
    Abstract: Provided are a memory device and a method of forming the same. The memory device includes a substrate, a layer stack, and a plurality of composite pillar structures. The layer stack is disposed on the substrate. The layer stack includes a plurality of conductive layers and a plurality of dielectric layers stacked alternately. The composite pillar structures respectively penetrate through the layer stack. Each composite pillar structure includes a dielectric pillar; a pair of conductive pillars penetrating through the dielectric pillar and electrically isolated from each other through a portion of the dielectric pillar; a channel layer covering both sides of the dielectric pillar and the pair of conductive pillars; a ferroelectric layer disposed between the channel layer and the layer stack; and a buffer layer disposed between the channel layer and the ferroelectric layer.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: April 25, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-I Wu, Yu-Ming Lin, Sai-Hooi Yeong