Patents Examined by Michael M Trinh
  • Patent number: 11955370
    Abstract: A system and methods of forming a dielectric material within a trench are described herein. In an embodiment of the method, the method includes introducing a first precursor into a trench of a dielectric layer, such that portions of the first precursor react with the dielectric layer and attach on sidewalls of the trench. The method further includes partially etching portions of the first precursor on the sidewalls of the trench to expose upper portions of the sidewalls of the trench. The method further includes introducing a second precursor into the trench, such that portions of the second precursor react with the remaining portions of the first precursor to form the dielectric material at the bottom of the trench.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Cyuan Lu, Ting-Gang Chen, Sung-En Lin, Chunyao Wang, Yung-Cheng Lu, Chi On Chui, Tai-Chun Huang, Chieh-Ping Wang
  • Patent number: 11923434
    Abstract: A method is presented for forming a vertical transport field effect transistor (VTFET). The method includes forming a plurality of fins over a substrate, depositing a sacrificial material adjacent the plurality of fins, forming self-aligned spacers adjacent the plurality of fins, removing the sacrificial material to define openings under the self-aligned spacers, filling the openings with bottom spacers, depositing an interlayer dielectric (ILD) after patterning, laterally etching the substrate such that bottom surfaces of the plurality of fins are exposed, the lateral etching defining cavities within the substrate, and filling the cavities with an epitaxial material such that epitaxial regions are defined each having a symmetric tapered shape under a twin-fin structure. The single fin device can be formed through additional patterning and bottom epi under the single fin device that has an asymmetric tapered shape.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: March 5, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tao Li, Ruilong Xie, Sung Dae Suk, Heng Wu
  • Patent number: 11915984
    Abstract: A method of forming an electrical connection between a buried power rail (BPR) of an unfinished complementary field effect transistor (CFET) and a source or drain epitaxial growth of a lower level of the CFET is provided. The method includes performing silicon epitaxial growth in a lower level of the CFET, adding a contact material to a portion of an exposed portion of the silicon epitaxial growth in the lower level, the exposed portion of the silicon epitaxial growth being located in a vertical slot of the unfinished CFET structure, adding a conductive material within a vertical channel, the conductive material being in contact with the added contact material and the BPR to form an electrical connection between the portion of the exposed portion of the silicon epitaxial growth and the BPR and etching back a portion of the added conductive material within the vertical channel.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: February 27, 2024
    Inventors: Xi-Wei Lin, Victor Moroz
  • Patent number: 11916073
    Abstract: A complementary field effect transistor (CFET) structure including a first transistor disposed above a second transistor, a first source/drain region of the first transistor disposed above a second source/drain region of the second transistor, wherein the first source/drain region comprises a smaller cross-section than the second source/drain region, a first dielectric material disposed in contact with a bottom surface and vertical surfaces of the first source/drain region and further in contact with a vertical surface and top surface of the second source/drain region, and a second dielectric material disposed as an interlayer dielectric material encapsulating the first and second transistors.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: February 27, 2024
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Kangguo Cheng, Julien Frougier, Chanro Park
  • Patent number: 11908907
    Abstract: An embodiment of the invention may include a Vertical Field Effect Transistor (VFET) structure, and method of making that structure, having a first VFET and a second VFET. The first VFET may include a single liner between a first source/drain epi and a contact. The second VFET may include two liners between a second source/drain epi and a contact. This may enable proper contact liner matching for differing VFET devices.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: February 20, 2024
    Assignee: International Business Machines Corporation
    Inventors: Heng Wu, Ruilong Xie, Tian Shen, Kai Zhao
  • Patent number: 11908932
    Abstract: An apparatus includes at least one vertical transistor having a channel region. The channel region includes an upper region having a first width and a lower region below the upper region and having a second width smaller than the first width. The upper region defines at least one overhang portion extending laterally beyond the lower region. The at least one vertical transistor further includes gate electrodes at least partially vertically beneath the at least one overhang portion of the upper region of the channel region. Additional apparatuses and related systems and methods are also disclosed.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: February 20, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Kevin J. Torek, Kamal M. Karda, Yunfei Gao, Kamal K. Muthukrishnan
  • Patent number: 11908860
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip (IC) having a device section and a pick-up section. The IC includes a semiconductor substrate. A first fin of the semiconductor substrate is disposed in the device section. A second fin of the semiconductor substrate is disposed in the pick-up section and laterally spaced from the first fin in a first direction. A gate structure is disposed in the device section and laterally spaced from the second fin in the first direction. The gate structure extends laterally over the semiconductor substrate and the first fin in a second direction perpendicular to the first direction. A pick-up region is disposed on the second fin. The pick-up region continuously extends from a first sidewall of the second fin to a second sidewall of the second fin. The first sidewall is laterally spaced from the second sidewall in the first direction.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Wen Su, Lien Jung Hung, Ping-Wei Wang, Wen-Chun Keng, Chih-Chuan Yang, Shih-Hao Lin
  • Patent number: 11903210
    Abstract: A semiconductor memory device includes a semiconductor substrate, transistors formed in an upper surface of the semiconductor substrate, a stacked body provided on the semiconductor substrate, a first contact, and a second contact. The transistors are arranged along a first direction. A minimum period of an arrangement of the transistors is a first period. The stacked body includes electrode films. A configuration of a first portion of the stacked body is a staircase-like having terraces. A first region and a second region are set along the first direction in the first portion. A length in the first direction of the terrace disposed in the second region is longer than the first period. A length in the first direction of the terrace disposed in the first region is shorter than the first period.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 13, 2024
    Assignee: Kioxia Corporation
    Inventor: Tetsuaki Utsumi
  • Patent number: 11901480
    Abstract: The present disclosure provides a light-emitting device comprising a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first top surface separated from the topmost surface by a first distance; a first bonding layer arranged between the substrate and the first semiconductor stack; a second semiconductor stack arranged on the substrate, and comprising a second top surface separated from the topmost surface by a second distance which is different form the first distance; a second bonding layer arranged between the substrate and the second semiconductor stack; a third semiconductor stack arranged on the substrate, and comprising third top surface separated from the topmost surface by a third distance; and a third bonding layer arranged between the substrate and the third semiconductor stack; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: February 13, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Chien-Fu Huang, Chih-Chiang Lu, Chun-Yu Lin, Hsin-Chih Chiu
  • Patent number: 11887897
    Abstract: Aspects of the present disclosure provide a method of fabricating a semiconductor device. For example, the method can include providing a substrate. The substrate can include a first type region and a second type region. The method can also include forming a multilayer stack on the substrate. The multilayer stack can include alternate metal layers and dielectric layers. The method can also include forming first and second openings through the multilayer stack to uncover the first and second type regions, respectively. The method can also include forming first and second vertical channel structures within the first and second openings, respectively. Each of the first and second vertical channel structures can have source, gate and drain regions being in contact with vertical sidewalls of the metal layers of the multilayer stack uncovered by a respective one of the first and second openings.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11875995
    Abstract: A method may include providing a substrate, where the substrate includes a first main surface and a second main surface, opposite the first main surface. The second main surface may include a stress compensation layer. The method may include directing ions to the stress compensation layer in an ion implant procedure. The ion implant procedure may include exposing a first region of the stress compensation layer to a first implant process, wherein a second region of the stress compensation layer is not exposed to the first implant process.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: January 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Scott Falk, Jun-Feng Lu, Qintao Zhang
  • Patent number: 11876125
    Abstract: Aspects of the present disclosure provide a 3D semiconductor apparatus and a method for fabricating the same. The 3D semiconductor apparatus can include a first semiconductor device including sidewall structures of a first gate metal sandwiched by dielectric layers, a first epitaxially grown channel surrounded by the sidewall structures; a second semiconductor device formed on the same substrate adjacent to the first semiconductor device that includes sidewall structures of a second gate metal sandwiched by dielectric layers, a second epitaxially grown channel surrounded by the sidewall structures; a salicide layer formed between the first and second semiconductor devices and metallization contacting each of the S/D regions and the gate regions. The 3D semiconductor apparatus may include a P+ epitaxially grown channel formed on the same substrate adjacent to an N+ epitaxially grown channel, the P+ epitaxially grown channel separated from N+ epitaxially grown channel by a diffusion break.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: January 16, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11862637
    Abstract: An integrated circuit device includes a first power rail, a first active area extending in a first direction, and a plurality of gates contacting the first active area and extending in a second direction perpendicular to the first direction. A first transistor includes the first active area and a first one of the gates. The first transistor has a first threshold voltage (VT). A second transistor includes the first active area and a second one of the gates. The second transistor has a second VT different than the first VT. A tie-off transistor is positioned between the first transistor and the second transistor, and includes the first active area and a third one of the gates, wherein the third gate is connected to the first power rail.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shao-Lun Chien, Ting-Wei Chiang, Hui-Zhong Zhuang, Pin-Dai Sue
  • Patent number: 11862452
    Abstract: In a first aspect, the present disclosure relates to a method for forming a contact isolation for a semiconductor device, comprising: providing a semiconductor structure comprising a trench exposing a contact thereunder, filling a bottom of the trench with a sacrificial material, infiltrating the sacrificial material with a ceramic material, and removing the sacrificial material.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: January 2, 2024
    Assignee: IMEC VZW
    Inventors: Boon Teik Chan, Waikin Li, Zheng Tao
  • Patent number: 11856743
    Abstract: A method includes etching a first semiconductor fin and a second semiconductor fin to form first recesses. The first and the second semiconductor fins have a first distance. A third semiconductor fin and a fourth semiconductor fin are etched to form second recesses. The third and the fourth semiconductor fins have a second distance equal to or smaller than the first distance. An epitaxy is performed to simultaneously grow first epitaxy semiconductor regions from the first recesses and second epitaxy semiconductor regions from the second recesses. The first epitaxy semiconductor regions are merged with each other, and the second epitaxy semiconductor regions are separated from each other.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11844242
    Abstract: An organic light-emitting display device including a substrate; a pixel in a display area of the organic light-emitting display device, the pixel being implemented by an organic light-emitting diode on the substrate; a first inclination structure surrounding the pixel; a second inclination structure at least partially surrounding the first inclination structure; and a planarization layer covering the first inclination structure and the second inclination structure and having a refractive index that is greater than a refractive index of the first inclination structure and is greater than a refractive index of the second inclination structure, wherein a height of the first inclination structure is greater than a height of the second inclination structure.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: December 12, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Woongsik Kim, Jinsu Byun, Koichi Sugitani, Gwangmin Cha, Saehee Han
  • Patent number: 11837435
    Abstract: The disclosure is directed to techniques in preparing an atom probe tomography (“APT”) specimen. The disclosed techniques form an APT specimen or sample directly on a DUT region on a wafer. The APT specimen is formed integrally to the substrate or the support structure, e.g., a carrier, under the APT specimen. A laser patterning is conducted to form a trench in the DUT and one or more bump structures in the trench. The laser patterning is relatively coarse and forms a coarse surface texture on each of the bump structures. A low-kV gas ion milling using a dual-beam focused ion beam (“FIB”) microscopes is then conducted to shape the bump structures into APT specimen.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: December 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Wei Hung, Jang Jung Lee
  • Patent number: 11817385
    Abstract: An integrated circuit includes an inductor that includes a first set of conductive lines in a first metal layer, and is over a substrate, and a guard ring. The guard ring includes a first conductive line in a second metal layer, and extending in a first direction, a second conductive line extending in a second direction, and a first staggered line coupled between the first conductive line and the second conductive line. The first staggered line includes a second set of conductive lines in the second metal layer, and extends in the first direction, a third set of conductive lines in a third metal layer, and extends in the second direction, and a first set of vias coupling the second and third set of conductive lines together. All metal lines in the third metal layer that are part of the guard ring extend in the second direction.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chiao-Han Lee, Chi-Hsien Lin, Ho-Hsiang Chen, Hsien-Yuan Liao, Tzu-Jin Yeh, Ying-Ta Lu
  • Patent number: 11810918
    Abstract: A semiconductor structure comprises two or more vertical fins, a bottom epitaxial layer surrounding a bottom portion of a given one of the two or more vertical fins, a top epitaxial layer surrounding a top portion of the given one of the two or more vertical fins, a shared epitaxial layer surrounding a middle portion of the given one of the two or more vertical fins, and a connecting layer contacting the bottom epitaxial layer and the top epitaxial layer, the connecting layer being disposed to a lateral side of the two or more vertical fins.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: November 7, 2023
    Assignee: International Business Machines Corporation
    Inventors: Tsung-Sheng Kang, Ardasheir Rahman, Tao Li, Su Chen Fan
  • Patent number: 11804506
    Abstract: An image sensor includes a two-dimensional array of image sensor pixels, which are formed in a semiconductor layer. Each image sensor pixel is formed in a substrate having a corresponding semiconductor region therein. Each semiconductor region contains at least first and second photoelectric conversion elements, which are disposed at side-by-side locations therein. An electrically insulating isolation region is also provided, which extends at least partially through the semiconductor region and at least partially between the first and second photoelectric conversion elements, which may be configured respectively as first and second semiconductor regions of first conductivity type (e.g., N-type). At least one optically reflective region is also provided, which extends at least partially through the semiconductor region and surrounds at least a portion of at least one of the first and second photoelectric conversion elements. A semiconductor floating diffusion (FD) region (e.g.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: October 31, 2023
    Inventors: Kyungho Lee, Hyuk An, Hyuk Soon Choi