Patents Examined by Michael M Trinh
  • Patent number: 11721592
    Abstract: A method of microfabrication includes providing a substrate having a first layer including a first semiconductor material. A second layer of a second semiconductor material is formed over the first layer. The second layer is directionally etched using a mask to form independent core structures of the second semiconductor material on the first semiconductor material. A third layer of a first dielectric material is formed on an exposed surface of the first layer to cover a lower portion of a respective sidewall of each core structure. A shell structure is formed on an upper portion of a respective sidewall of each core structure to form shell structures including at least one semiconductor material. The core structures are removed such that each shell structure forms a vertical semiconductor structure extending vertically from the first layer and electrically isolated from the first semiconductor material by the first dielectric material.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: August 8, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11705366
    Abstract: Methods of etching a metal layer and a metal-containing barrier layer to a predetermined depth are described. In some embodiments, the metal layer and metal-containing barrier layer are formed on a substrate with a first dielectric and a second dielectric thereon. The metal layer and the metal-containing barrier layer formed within a feature in the first dielectric and the second dielectric. In some embodiments, the metal layer and metal-containing barrier layer can be sequentially etched from a feature formed in a dielectric material. In some embodiments, the sidewalls of the feature formed in a dielectric material are passivated to change the adhesion properties of the dielectric material.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: July 18, 2023
    Assignee: Micromaterials LLC
    Inventors: He Ren, Amrita B. Mullick, Regina Freed, Mehul Naik, Uday Mitra
  • Patent number: 11700758
    Abstract: A display device includes: a light-emitting element at a display area; a driving element electrically connected to the light-emitting element; an encapsulation layer covering the light-emitting element; a touch sensor on the encapsulation layer; a connection pad at a bonding area, the connection pad including a lower conductive layer, an intermediate conductive layer on the lower conductive layer, and an upper conductive layer on the intermediate conductive layer; a cladding layer covering at least a side surface of the intermediate conductive layer and including an organic material; a passivation layer covering an upper surface of the cladding layer and including an inorganic material, a portion of the passivation layer being located under the upper conductive layer; and a driving circuit attached to the connection pad.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: July 11, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Yup Kim, Deukjong Kim, Hagyeong Song
  • Patent number: 11658062
    Abstract: Semiconductor devices having air gap spacers that are formed as part of BEOL or MOL layers of the semiconductor devices are provided, as well as methods for fabricating such air gap spacers. For example, a method comprises forming a first metallic structure and a second metallic structure on a substrate, wherein the first and second metallic structures are disposed adjacent to each other with insulating material disposed between the first and second metallic structures. The insulating material is etched to form a space between the first and second metallic structures. A layer of dielectric material is deposited over the first and second metallic structures using a pinch-off deposition process to form an air gap in the space between the first and second metallic structures, wherein a portion of the air gap extends above an upper surface of at least one of the first metallic structure and the second metallic structure.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: May 23, 2023
    Assignee: TESSERA LLC
    Inventors: Kangguo Cheng, Thomas J. Haigh, Juntao Li, Eric G. Liniger, Sanjay C. Mehta, Son V. Nguyen, Chanro Park, Tenko Yamashita
  • Patent number: 11658078
    Abstract: A method of polishing a substrate includes polishing a conductive layer on the substrate at a polishing station, monitoring the layer with an in-situ eddy current monitoring system to generate a plurality of measured signals values for a plurality of different locations on the layer, generating thickness measurements the locations, and detecting a polishing endpoint or modifying a polishing parameter based on the thickness measurements. The conductive layer is formed of a first material having a first conductivity. Generating includes calculating initial thickness values based on the plurality of measured signals values and processing the initial thickness values through a neural network that was trained using training data acquired by measuring calibration substrates having a conductive layer formed of a second material having a second conductivity that is lower than the first conductivity to generated adjusted thickness values.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: May 23, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Kiran Lall Shrestha, Doyle E. Bennett, David Maxwell Gage, Benjamin Cherian, Jun Qian, Harry Q. Lee
  • Patent number: 11652187
    Abstract: The present disclosure describes one or more embodiment of a method for creating a patterned quantum dot layer. The method includes bringing a patterning stamp in contact with a layer of quantum dots disposed on a substrate, the patterning stamp comprising a patterned photoresist layer disposed on an elastomer layer, such that a portion of the quantum dots in contact with the patterned photoresist layer adheres to the patterning stamp, the portion of the quantum dots being adhered quantum dots. The method also includes peeling the patterning stamp from the substrate with a peeling speed larger than a pre-determined peeling speed to remove the adhered quantum dots from the substrate. A remaining portion of the quantum dots forms a patterned quantum dot layer on the substrate.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: May 16, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Seok Kim, Moonsub Shim, Jun Kyu Park, Hohyun Keum, Yiran Jiang
  • Patent number: 11640961
    Abstract: An integrated circuit structure comprises a lower device layer that includes a first structure comprising a plurality of PMOS transistors. An upper device layer is formed on the lower device layer, wherein the upper device layer includes a second structure comprising a plurality of NMOS transistors having a group III-V material source/drain region.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Ravi Pillarisetty, Jack T. Kavalieros, Aaron D. Lilak, Willy Rachmady, Rishabh Mehandru, Kimin Jun, Anh Phan, Hui Jae Yoo, Patrick Morrow, Cheng-Ying Huang, Matthew V. Metz
  • Patent number: 11637010
    Abstract: The present disclosure involves forming a porous low-k dielectric structure. A plurality of conductive elements is formed over the substrate. The conductive elements are separated from one another by a plurality of openings. A barrier layer is formed over the conductive elements. The barrier layer is formed to cover sidewalls of the openings. A treatment process is performed to the barrier layer. The barrier layer becomes hydrophilic after the treatment process is performed. A dielectric material is formed over the barrier layer after the treatment process has been performed. The dielectric material fills the openings and contains a plurality of porogens.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: April 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-Jiun Lin, Hai-Ching Chen, Tien-I Bao
  • Patent number: 11621305
    Abstract: A display device includes a first display substrate and a second display substrate. The first display substrate includes a first base, a first electrode disposed on the first base, a second electrode spaced apart from the first electrode, and a light emitting element disposed between the first electrode and the second electrode. The second display substrate faces the first display substrate and is configured to receive light emitted from the light emitting element. The second display substrate includes a second base, a first color filter disposed on a surface of the second base, and a first wavelength conversion pattern disposed on the first color filter. The first wavelength conversion pattern includes a first surface facing the first display substrate, and a second surface facing the first surface and the first color filter. The first surface includes a curved surface portion recessed toward the second surface.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: April 4, 2023
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Sang Jin Park, Hyun Ae Kim, Hee Ra Kim, Ha Na Seo, Chong Sup Chang, Eui Kang Heo
  • Patent number: 11621184
    Abstract: A laser marking device includes a laser emission unit configured to emit a laser beam to a first surface of an object to be processed, and a pressing unit configured to press a second surface that is opposite to the first surface of the object to be processed to make the first surface of the object to be flat. The pressing unit includes a first pressing portion configured to press an edge area of the second surface in a contact manner, and at least one second pressing portion configured to press a middle area of the second surface in a non-contact manner to maintain a separation distance from the second surface within a certain distance.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: April 4, 2023
    Assignee: EO TECHNICS CO., LTD.
    Inventors: Sung Beom Jung, Jea Ho Moon, Soo Young Kim, Doo Seok Lee
  • Patent number: 11615990
    Abstract: A method includes forming a p-type field effect transistor region and an n-type field effect transistor region into a semiconductor substrate. The method implements a process flow to fabricate highly doped top source/drains with minimal lithography and etching processes. The method permits the formation of VFETs with increased functionality and reduced scaling.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: March 28, 2023
    Assignee: International Business Machines Corporation
    Inventors: Heng Wu, Ruilong Xie, Su Chen Fan, Jay William Strane, Hemanth Jagannathan
  • Patent number: 11610822
    Abstract: A semiconductor device includes a first gate structure that includes a first interfacial layer, a first gate dielectric layer disposed over the first interfacial layer, and a first gate electrode disposed over the first gate dielectric layer. The semiconductor device also includes a second gate structure that includes a second interfacial layer, a second gate dielectric layer disposed over the second interfacial layer, and a second gate electrode disposed over the second gate dielectric layer. The first interfacial layer contains a different amount of a dipole material than the second interfacial layer.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Yu Chen, Chung-Liang Cheng
  • Patent number: 11605708
    Abstract: Integrated circuit devices and methods of forming the same are provided. Integrated circuit devices may include a first active region including a first vertical field effect transistor (VFET), a second active region including a second VFET, and a diffusion break between the first active region and the second active region on a substrate. The diffusion break may include first and second isolation layers in the substrate and a diffusion break channel region protruding from a portion of the substrate. The portion of the substrate may be between the first isolation layer and the second isolation layer. In some embodiments, the first and second isolation layers may be adjacent to respective opposing sidewalls of the diffusion break channel region.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: March 14, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byounghak Hong, Seunghyun Song
  • Patent number: 11587927
    Abstract: A device includes a semiconductor substrate having a first region and a second region. The device further includes a first pair of fin structures within the first region. The device further includes a second pair of fin structures within the second region. A top surface of the semiconductor surface between fin structures within the first pair is higher than a top surface of the semiconductor surface between the first pair and the second pair.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: February 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chuan Yang, Yu-Kuan Lin
  • Patent number: 11581226
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary method comprises forming first and second semiconductor fins in first and second regions of a substrate, respectively; forming first and second dummy gate stacks over the first and second semiconductor fins, respectively, and forming a spacer layer over the first and the second dummy gate stacks; forming a first pattern layer with a thickness along the spacer layer in the first region; form a first source/drain (S/D) trench along the first pattern layer and epitaxially growing a first epitaxial feature therein; removing the first pattern layer to expose the spacer layer; forming a second pattern layer with a different thickness along the spacer layer in the second region; form a second S/D trench along the second pattern layer and epitaxially growing a second epitaxial feature therein; and removing the second pattern layer to expose the spacer layer.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Hao Lin, Tzu-Hsiang Hsu, Chong-De Lien, Szu-Chi Yang, Hsin-Wen Su, Chih-Hsiang Huang
  • Patent number: 11557502
    Abstract: A method is provided for forming at least one trench to be filled with an isolating material to form an isolating trench, in a substrate based on a semiconductor material, the method including at least the following successive steps: providing a stack including at least the substrate, a first hard mask layer, and a second hard mask layer; making at least a first opening and a second opening, by carrying out isotropic etchings; performing a third, anisotropic, etching of the substrate in line with the second opening, so as to obtain the at least one trench; performing a fourth, isotropic, etching of the first layer so as to enlarge the first opening and obtain a first enlarged opening; and performing a fifth, anisotropic, etching so as to simultaneously enlarge the second opening and increase a depth of the at least one trench.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: January 17, 2023
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Nicolas Posseme
  • Patent number: 11557537
    Abstract: A memory device includes an array of memory cells and a plurality of bit-lines with each bit-line connected to a respective set of memory cells of the array of memory cells. The memory device includes a memory subsystem having first and second memory circuits. Each first memory circuit can be disposed laterally adjacent to a second memory circuit. Each first memory circuit includes a first bit-line connection and each second memory circuit including a second bit-line connection, the first and second bit-line connections can connect to respective bit-lines. Each first bit-line connection is disposed on a first bit-line connection line of the memory subsystem and each second bit-line connection is disposed on a second bit-line connection line of the memory subsystem, and the second bit-line connection line can be offset from the first bit-line connection line by a predetermined distance that is greater than zero.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: January 17, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Smith, Haitao Liu, Vladimir Mikhalev
  • Patent number: 11557657
    Abstract: Aspects of the present disclosure provide a method of fabricating a semiconductor device. For example, the method can include forming a multilayer stack on a substrate. The multilayer stack can include alternate metal layers and dielectric layers. The method can also include forming at least one opening through the multilayer stack to uncover the substrate and forming at least two vertical channel structures within the opening that are stacked on each other. The vertical channel structures can have source, gate and drain regions being in contact with the metal layers of the multilayer stack, respectively. The method can also include removing a central portion of the vertical channel structures and filling the central portion of the vertical channel structures with a dielectric core. The dielectric core can isolate the vertical channel structures from each other and from the substrate.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 17, 2023
    Assignee: Tokyo Electron Limited
    Inventors: H. Jim Fulford, Mark I. Gardner
  • Patent number: 11551981
    Abstract: A method and apparatus are provided. In an example, a volume portion of the solid body is exposed to light waves of different wavelengths, wherein the light waves are partly reflected at surfaces of the solid body. Light parameters of the reflected light waves are at least partly acquired using a sensor device. Distance information and/or intensity information are/is ascertained from at least a portion of the acquired light parameters. A thickness and/or a transmittance of the solid body in the volume portion are/is determined based upon the distance information and/or the intensity information. Laser radiation is introduced into the volume portion to produce a modification in the interior of the solid body, wherein at least one laser parameter of the laser radiation is set at least depending on the thickness and/or the transmittance such that the modification is at a predefined distance from a surface of the solid body.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: January 10, 2023
    Assignee: Infineon Technologies AG
    Inventors: Ralf Rieske, Marko Swoboda, Albrecht Ullrich
  • Patent number: 11552175
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, a first semiconductor layer of the first conductivity type formed on the semiconductor substrate and having a first conductivity type impurity concentration higher than that of the semiconductor substrate, a second semiconductor layer of a second conductivity type formed above the first semiconductor layer, a first device region formed in the second semiconductor layer and configured to operate based on a first reference voltage, a second device region formed in the second semiconductor layer and configured to operate based on a second reference voltage, the second device region being spaced apart from the first device region, and a region isolation structure interposed between the first and second device regions and formed in a region extending from a front surface of the second semiconductor layer to the first semiconductor layer so as to electrically isolate the first and second device regions from each other.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: January 10, 2023
    Assignee: ROHM CO., LTD.
    Inventors: Nobuyuki Otsubo, Daisuke Ichikawa, Yasushi Hamazawa