Patents Examined by Michael M Trinh
  • Patent number: 11342625
    Abstract: A method of fabricating a porous wafer battery comprises the steps of providing a silicon wafer comprising a plurality of pores; applying a first metallization process; applying a passivation process; applying solder balls, aligning the silicon wafer with a substance, and applying a solder reflow process. A method using a porous wafer battery comprises the steps of connecting the porous wafer battery to a plurality of sensors, a plurality of switches, and a battery management system; monitoring temperature, resistance, or current; and electrically disconnecting a non-properly functioning pore.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: May 24, 2022
    Assignee: Xnrgi, Inc.
    Inventors: Gerard Christopher D'Couto, Slobodan Petrovic
  • Patent number: 11342188
    Abstract: A method includes forming a first gate dielectric and a second gate dielectric over a first semiconductor region and a second semiconductor region, respectively, depositing a lanthanum-containing layer including a first portion and a second portion overlapping the first gate dielectric and the second gate dielectric, respectively, and depositing a hard mask including a first portion and a second portion overlapping the first portion and the second portion of the lanthanum-containing layer, respectively. The hard mask is free from both of titanium and tantalum. The method further includes forming a patterned etching mask to cover the first portion of the hard mask, with the second portion of the hard mask being exposed, removing the second portion of the hard mask and the second portion of the lanthanum-containing layer, and performing an anneal to drive lanthanum in the first portion of the lanthanum-containing layer into the first gate dielectric.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Feng Yu, Chun Hsiung Tsai, Jian-Hao Chen, Hoong Shing Wong, Chih-Yu Hsu
  • Patent number: 11335570
    Abstract: A microelectronic device, in a multirow gull-wing chip scale package, has a die connected to intermediate pads by wire bonds. The intermediate pads are free of photolithographically-defined structures. An encapsulation material at least partially surrounds the die and the wire bonds, and contacts the intermediate pads. Inner gull-wing leads and outer gull-wing leads, located outside of the encapsulation material, are attached to the intermediate pads. The gull-wing leads have external attachment surfaces opposite from the intermediate pads. The external attachment surfaces of the outer gull-wing leads are located outside of the external attachment surfaces of the inner gull-wing leads. The microelectronic device is formed by mounting the die on a carrier, forming the intermediate pads without using a photolithographic process, and forming the wire bonds. The encapsulation material is formed, and the carrier is subsequently removed, exposing the intermediate pads.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: May 17, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sreenivasan K Koduri
  • Patent number: 11329018
    Abstract: A technique for fabricating a bump structure is disclosed. A substrate that includes a set of pads formed on a surface thereof is prepared, in which the pads includes first conductive material. A metallic adhesion layer is coated on each pad. A bump base is formed on each pad by sintering conductive particles using a mold layer, in which the conductive particles includes second conductive material different from the first conductive material.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: May 10, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Hisada, Toyohiro Aoki, Eiji Nakamura
  • Patent number: 11322727
    Abstract: An object of the present invention is to provide an optical device that can accomplish both the effect of preventing external light reflection and the improvement of utilization efficiency of light emitted from an organic electroluminescent element. The object is achieved by an optical device having an organic electroluminescent substrate, a circularly polarized light-separating layer that has a liquid crystal alignment pattern, in which the direction of an optical axis derived from a liquid crystal compound changes while continuously rotating in one direction in a plane, and separates light into right-handed circularly polarized light and left-handed circularly polarized light, a patterned retardation layer that converts circularly polarized light into linearly polarized light and has a plurality of regions among which the direction of a slow axis varies in the same plane, and a polarizer.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: May 3, 2022
    Assignee: FUJIFILM Corporation
    Inventors: Yukito Saitoh, Hiroshi Sato
  • Patent number: 11322549
    Abstract: A display device includes a substrate including a display area and a non-display area, a pixel unit provided in the display area, and including a first pixel column including a plurality of pixels and a second pixel column including a plurality of pixels displaying a different color from a color of the first pixel column, and data lines which are respectively connected to the first pixel column and the second pixel column, and respectively apply data signals to the first pixel column and the second pixel column, wherein the data line connected to the first pixel column includes sub lines and the data line connected to the second pixel column includes sub lines.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 3, 2022
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Deuk Jong Kim, Ji Hye Heo, Za Il Lhee, Mi Na Jung
  • Patent number: 11322662
    Abstract: The optoelectronic device including a radiation emitting semiconductor chip emitting electromagnetic radiation of a first wavelength range from a radiation exit surface, and a conversion element converting electromagnetic radiation of the first wavelength range into electromagnetic radiation of a second wavelength range at least partially and emitting electromagnetic radiation from a light coupling-out surface, wherein the light coupling-out surface of the conversion element is smaller than the radiation exit surface of the semiconductor chip.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: May 3, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Martin Brandl, Alexander Baumgartner, Ion Stoll
  • Patent number: 11315790
    Abstract: A method may include providing a substrate in a plasma chamber, the substrate comprising a monocrystalline semiconductor, having an upper surface. The method may include initiating a plasma in the plasma chamber, the plasma comprising an amorphizing ion species, and applying a pulse routine to the substrate, the pulse routine comprising a plurality of extraction voltage pulses, wherein a plurality of ion pulses are directed to the substrate, and wherein an ion dose per pulse is greater than a threshold for low dose amorphization.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: April 26, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Supakit Charnvanichborikarn, Christopher R. Hatem
  • Patent number: 11276644
    Abstract: An aspect of the disclosure relates to an integrated circuit. The integrated circuit includes a first electrically conductive structure, a thin film crystal layer located on the first electrically conductive structure, and a second electrically conductive structure including metal e.g. copper. The second electrically conductive structure is located on the thin film crystal layer. The first electrically conductive structure is electrically connected to the second electrically conductive structure through the thin film crystal layer. The thin film crystal layer may be provided as a copper diffusion barrier.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 15, 2022
    Assignee: Intel Corporation
    Inventors: Carl Naylor, Ashish Agrawal, Kevin Lin, Abhishek Sharma, Mauro Kobrinsky, Christopher Jezewski, Urusa Alaan
  • Patent number: 11276672
    Abstract: A light emitting diode (LED) chip is bonded to a substrate. The LED chip includes one or more dummy electrodes that corresponds to one or more contacts on the substrate. The one or more dummy electrodes are exposed to a laser beam for coupling the one or more dummy electrodes to the one or more contacts. The one or more dummy electrodes may be positioned along edges of the LED chip that surround a display area of the LED chip and provide bonding strength between the LED chip and the substrate.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: March 15, 2022
    Assignee: Facebook Technologies, LLC
    Inventors: Jeb Wu, Oscar Torrents Abad, Daniel Brodoceanu, Pooya Saketi, Zheng Sung Chio, Ali Sengül
  • Patent number: 11271065
    Abstract: The embodiments of the present application provide a display substrate, a light field display apparatus, and a method for driving the same. The display substrate includes: a base substrate; a light emitting block on the base substrate, wherein the light emitting block comprises a plurality of first light emitting units, and each of the first light emitting units comprises a plurality of first light emitting points which are located at a plurality of predetermined positions in the first light emitting unit respectively; and first driving leads each electrically connected to first light emitting points located at the same predetermined positions in the respective first light emitting units and configured to receive a first driving signal from a driving circuit.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: March 8, 2022
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Ming Yang, Minghua Xuan, Can Zhang, Can Wang, Han Yue, Ning Cong, Jiayao Liu
  • Patent number: 11264289
    Abstract: A method for microfabrication of a three dimensional transistor stack having gate-all-around field-effect transistor devices. The channels hang between source/drain regions. Each channel is selectively deposited with layers of materials designed for adjusting the threshold voltage of the channel. The layers may be oxides, high-k materials, work function materials and metallization. The three dimensional transistor stack forms an array of high threshold voltage devices and low threshold voltage devices in a single package.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: March 1, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Jeffrey Smith, Kandabara Tapily, Lars Liebmann, Daniel Chanemougame, Mark Gardner, H. Jim Fulford, Anton J. Devilliers
  • Patent number: 11257817
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip (IC) having a device section and a pick-up section. The IC includes a semiconductor substrate. A first fin of the semiconductor substrate is disposed in the device section. A second fin of the semiconductor substrate is disposed in the pick-up section and laterally spaced from the first fin in a first direction. A gate structure is disposed in the device section and laterally spaced from the second fin in the first direction. The gate structure extends laterally over the semiconductor substrate and the first fin in a second direction perpendicular to the first direction. A pick-up region is disposed on the second fin. The pick-up region continuously extends from a first sidewall of the second fin to a second sidewall of the second fin. The first sidewall is laterally spaced from the second sidewall in the first direction.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Wen Su, Lien Jung Hung, Ping-Wei Wang, Wen-Chun Keng, Chih-Chuan Yang, Shih-Hao Lin
  • Patent number: 11251182
    Abstract: A semiconductor structure includes a first semiconducting channel having a plurality of vertical nanowires and a second semiconducting channel having a plurality of vertical nanowires. The first semiconducting channel and the second semiconducting channel are configured to be in a stacked configuration. The plurality of vertical nanowires of the first semiconducting channel are configured to be in alternating positions relative to the plurality of vertical nanowires of the second semiconducting channel.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: February 15, 2022
    Assignee: International Business Machines Corporation
    Inventors: Tsung-Sheng Kang, Tao Li, Ardasheir Rahman, Praveen Joseph, Indira Seshadri, Ekmini Anuja De Silva
  • Patent number: 11239275
    Abstract: An electronic device may include an optical image sensor that includes an array of optical image sensing pixels and a pin hole array mask layer above the optical image sensor and that includes spaced apart pin holes therein defining spaced apart image areas on the optical image sensor. The electronic device also includes a display layer above the pin hole array mask layer that includes spaced apart display pixels. The electronic device may also include processing circuitry coupled to the optical image sensor and capable of sensing images from spaced apart sub-arrays of the array of optical image sensing pixels aligned with the spaced apart image areas.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: February 1, 2022
    Assignee: Apple Inc.
    Inventors: Mohammad Yeke Yazdandoost, Giovanni Gozzini
  • Patent number: 11233133
    Abstract: Methods of forming thin-film structures including one or more NbMC layers, and structures and devices including the one or more NbMC layers are disclosed. The NbMC layers enable tuning of various structure and device properties, including resistivity, current leakage, and work function.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: January 25, 2022
    Assignee: ASM IP Holding B.V.
    Inventors: Chiyu Zhu, Timo Asikainen, Robert Brennan Milligan
  • Patent number: 11232974
    Abstract: Various embodiments of the present application are directed to a method for forming a semiconductor-on-insulator (SOI) device with an impurity competing layer to absorb potential contamination metal particles during an annealing process, and the SOI structure thereof. In some embodiments, an impurity competing layer is formed on the dummy substrate. An insulation layer is formed over a support substrate. A front side of the dummy wafer is bonded to the insulation layer. An annealing process is performed and the impurity competing layer absorbs metal from an upper portion of the dummy substrate. Then, a majority portion of the dummy substrate is removed including the impurity competing layer, leaving a device layer of the dummy substrate on the insulation layer.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: January 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Pu-Fang Chen, Cheng-Ta Wu, Po-Jung Chiang, Ru-Liang Lee, Victor Y. Lu, Yen-Hsiu Chen, Yeur-Luen Tu, Yu-Lung Yeh, Shi-Chieh Lin
  • Patent number: 11227788
    Abstract: According to an exemplary embodiment, a method of forming an isolation layer is provided. The method includes the following operations: providing a substrate; providing a vertical structure having a first layer over the substrate; providing a first interlayer dielectric over the first layer; performing CMP on the first interlayer dielectric; and etching back the first interlayer dielectric and the first layer to form the isolation layer corresponding to a source of the vertical structure.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: January 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Teng-Chun Tsai, Bing-Hung Chen, Chien-Hsun Wang, Cheng-Tung Lin, Chih-Tang Peng, De-Fang Chen, Huan-Just Lin, Li-Ting Wang, Yung-Cheng Lu
  • Patent number: 11201057
    Abstract: A method may include providing a substrate, where the substrate includes a first main surface and a second main surface, opposite the first main surface. The second main surface may include a stress compensation layer. The method may include directing ions to the stress compensation layer in an ion implant procedure. The ion implant procedure may include exposing a first region of the stress compensation layer to a first implant process, wherein a second region of the stress compensation layer is not exposed to the first implant process.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: December 14, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Scott Falk, Jun-Feng Lu, Qintao Zhang
  • Patent number: 11201316
    Abstract: A display panel including an anode layer, a functional layer, a cathode layer, and a packaging layer is provided, in which the functional layer includes a hole transport layer, a light-emitting layer, a reflective layer, and an electron transport layer. The display panel has an advantage in increasing light transmittance.
    Type: Grant
    Filed: April 12, 2020
    Date of Patent: December 14, 2021
    Assignee: Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd.
    Inventor: Shiqian Ye