Patents Examined by Michael Trinh
  • Patent number: 7151020
    Abstract: A method of forming an integrated circuit with a semiconductor substrate is provided. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate. A transition metal layer is formed on the source/drain junctions and on the gate. An interlayer dielectric is formed above the semiconductor substrate. Contacts are then formed in the interlayer dielectric, whereby a silicide is formed from the transition metal layer at a temperature no higher than the maximum temperature at which the interlayer dielectric and the contacts are formed.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: December 19, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jeffrey P. Patton, Austin C. Frenkel, Thorsten Kammler, Robert J. Chiu, Errol Todd Ryan, Darin A. Chan, Paul R. Besser, Paul L. King, Minh Van Ngo
  • Patent number: 7151320
    Abstract: A semiconductor device comprises: a semiconductor chip having a first main surface, a second main surface, and a plurality of side surfaces; an extension portion which contacts and surrounds the side surfaces of the semiconductor chip; a base, which is capable of conducting heat generated by the semiconductor chip; an insulating film which is formed on the first face and the first main surface; a plurality of wiring patterns extended from electrode pads to the upper side of the first face of the extension portion; a sealing portion which is formed on the wiring patterns and insulating film; and a plurality of external terminals provided over the wiring patterns in a region including the upper side of the extension portion.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: December 19, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Yoshinori Shizuno
  • Patent number: 7151300
    Abstract: Disclosed are a phase-change memory device and its manufacturing method, which can reduce a contact area between a bottom electrode and a phase-change layer, thereby reducing the quantity of current necessary for phase change. The phase-change memory device comprises: bottom electrodes and top electrodes formed on a dielectric interlayer, each of the bottom electrodes and the top electrodes having both side surfaces in contact with a first oxide layer, a phase-change layer, a nitride layer, and a second oxide layer; the phase-change layer formed between the first oxide layer and the nitride layer while being in contact with the side surfaces of the bottom electrodes and the top electrodes; a third oxide layer formed on the bottom electrodes and the top electrode; and a metal wire in contact with the top electrode.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: December 19, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventor: Heon Yong Chang
  • Patent number: 7148097
    Abstract: A method for manufacturing an integrated circuit 10 having transistors 20, 30 of two threshold voltages where protected transistor stacks 270 have a gate protection layer 220 that are formed with the use of a single additional mask step. Also, an integrated circuit 10 having at least one polysilicon gate transistor 20 and at least one FUSI metal gate transistor 30.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: December 12, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Shaofeng Yu, Benjamin P. McKee
  • Patent number: 7148078
    Abstract: An integrated circuit package includes an angled one-piece substrate having a light source fixed to one area and a sensor die fixed to a second area, such that the light source is directed to illuminate the field of view of the sensor die when a surface of interest is imaged. The integrated circuit package is well suited for generating navigation information regarding movement relative to a surface. In one method of forming the integrated circuit package, the single-piece substrate is originally a generally flat lead frame to which the sensor die and light source are attached. After the components have been connected, the lead frame is bent to provide the desired light source-to-sensor angle. In an alternative method, the lead frame is pre-bent. For either method, optics may be connected to the integrated circuit package, thereby providing a module that includes the optics, the light source, the sensor and the packaging body.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: December 12, 2006
    Assignee: Avago Technologies EGBU IP (Singapore) Pte. Ltd.
    Inventors: Vincent C. Moyer, Michael J. Brosnan
  • Patent number: 7145197
    Abstract: A semiconductor device includes a semiconductor substrate, a trench formed in the semiconductor substrate, an island-like element region formed in the semiconductor substrate, having an upper surface, first to third side surfaces, an upper portion, a middle portion and a lower portion, a gate insulating film formed on the first to third side surfaces in the upper portion of the element region, a gate electrode having first and second bottom surfaces, a first diffusion layer formed along the upper surface of the element region, a second diffusion layer formed along the first side surface in the middle portion of the element region, a channel region having first to third regions formed along the first to third side surfaces in the upper portion of the element region, a capacitor formed in the trench, and a bit line electrically connected to the first diffusion layer.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: December 5, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kidoh, Hideaki Aochi, Ryota Katsumata, Masaru Kito, Hitomi Yasutake
  • Patent number: 7144754
    Abstract: A device including a chip, and a resin package sealing the chip, the resin package having resin projections located on a mount-side surface of the resin package. Metallic films are respectively provided to the resin projections. Connecting parts electrically connect electrode pads of the chip and the metallic film.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: December 5, 2006
    Assignee: Fujitsu Limited
    Inventors: Yoshiyuki Yoneda, Kazuto Tsuji, Seiichi Orimo, Hideharu Sakoda, Ryuji Nomoto, Masanori Onodera, Junichi Kasai
  • Patent number: 7141481
    Abstract: A method of fabricating a nano-scale resistance cross-point memory array includes preparing a silicon substrate; depositing silicon oxide on the substrate to a predetermined thickness; forming a nano-scale trench in the silicon oxide; depositing a first connection line in the trench; depositing a memory resistor layer in the trench on the first connection line; depositing a second connection line in the trench on the memory resistor layer; and completing the memory array. A cross-point memory array includes a silicon substrate; a first connection line formed on the substrate; a colossal magnetoresistive layer formed on the first connection line; a silicon nitride layer formed on a portion of the colossal magnetoresistive layer; and a second connection line formed adjacent the silicon nitride layer and on the colossal magnetoresistive layer.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: November 28, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei-Wei Zhuang, Wei Pan, Fengyan Zhang
  • Patent number: 7141477
    Abstract: Into a channel formation region of a semiconductor substrate of p-type silicon, indium ions are implanted at an implantation energy of about 70 keV and a dose of about 5×1013/cm2, thereby forming a p-doped channel layer. Next, germanium ions are implanted into the upper portion of the semiconductor substrate at an implantation energy of about 250 keV and a dose of about 1×1016/cm2, thereby forming an amorphous layer in a region of the semiconductor substrate deeper than the p-doped channel layer.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: November 28, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Taiji Noda
  • Patent number: 7141478
    Abstract: The present invention is generally directed to a multi-stage epi process for forming semiconductor devices, and the resulting device. In one illustrative embodiment, the method comprises forming a first layer of epitaxial silicon above a surface of a semiconducting substrate, forming a second layer of epitaxial silicon above the first layer of epitaxial silicon, forming a third layer of epitaxial silicon above the second layer of epitaxial silicon, forming a trench isolation region that extends through at least the third layer of epitaxial silicon and forming a portion of a semiconductor device above the third layer of epitaxial silicon within an area defined by the isolation region.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: November 28, 2006
    Assignee: Legerity Inc.
    Inventor: Chris Speyer
  • Patent number: 7141450
    Abstract: Flip-chips are aligned by making a fiducial in the “top” chip that is translucent/transparent to light of a wavelength shorter than infrared, and at least one corresponding fiducial in the “bottom” chip. The top-chip fiducial may be made of a transparent or translucent material, its shape may be outlined by an opaque material, or it may be formed by etching through the top chip. The bottom-chip fiducial may be reflective of the light which is transparent/translucent to the fiducial in the top chip, in which case alignment can be achieved by employing at least one video camera which is located above the top chip. Alternatively, the fiducial in the bottom chip may also be transparent/translucent to the light, in which case alignment can be achieved by having the video camera located below the bottom chip. The chips are aligned by aligning the fiducials as seen by the video camera.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: November 28, 2006
    Assignee: Lucent Technologies Inc.
    Inventor: Flavio Pardo
  • Patent number: 7132313
    Abstract: A semiconductor chip is shown containing an integral heat spreading layer that more effectively transmits heat from the die to ambient as a result of spreading the heat out on the die over a larger cross sectional area. Local hot spots are minimized which allows the semiconductor chip to operate at a higher frequency for a given upper threshold temperature. Also shown is a method of manufacturing such a semiconductor chip, and the associated method of cooling a semiconductor chip.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: November 7, 2006
    Assignee: Intel Corporation
    Inventors: Michael O'Connor, Kevin J. Haley, Biswajit Sur
  • Patent number: 7132329
    Abstract: A storage device structure (10) has two bits of storage per control gate (34) and uses source side injection (SSI) to provide lower programming current. A control gate (34) overlies a drain electrode formed by a doped region (22) that is positioned in a semiconductor substrate (12). Two select gates (49 and 50) are implemented with conductive sidewall spacers adjacent to and lateral to the control gate (34). A source doped region (60) is positioned in the semiconductor substrate (12) adjacent to one of the select gates for providing a source of electrons to be injected into a storage layer (42) underlying the control gate. Lower programming results from the SSI method of programming and a compact memory cell size exists.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: November 7, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong M. Hong, Gowrishankar L. Chindalore
  • Patent number: 7132361
    Abstract: Via holes are formed in a continuous inline shadow mask production system by depositing a first conductor layer and subsequently depositing a first insulator layer over a portion of the first conductor layer. The first insulator layer is deposited in a manner to define at least one notch along its edge. The second insulator layer is then deposited on another portion of the first conductor layer in a manner whereupon the second insulator layer slightly overlaps each notch of the first insulator layer, thereby forming the one or more via holes. A conductive filler can optionally be deposited in each via hole. Lastly, a second conductive layer can be deposited over the first insulator layer, the second insulator layer and, if provided, the conductive filler.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: November 7, 2006
    Assignee: Advantech Global, Ltd
    Inventors: Thomas P. Brody, Joseph A. Marcanio, Jeffrey W. Conrad, Timothy A. Cowen
  • Patent number: 7132338
    Abstract: In one embodiment, a method for fabricating a silicon-based device on a substrate surface is provided which includes depositing a first silicon-containing layer by exposing the substrate surface to a first process gas comprising Cl2SiH2, a germanium source, a first etchant and a carrier gas and depositing a second silicon-containing layer by exposing the first silicon-containing layer to a second process gas comprising SiH4 and a second etchant. In another embodiment, a method for depositing a silicon-containing material on a substrate surface is provided which includes depositing a first silicon-containing layer on the substrate surface with a first germanium concentration of about 15 at % or more.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: November 7, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Arkadii V. Samoilov, Yihwan Kim, Errol Sanchez, Nicholas C. Dalida
  • Patent number: 7125779
    Abstract: There is provided a MISFET which suppresses a short-channel effect in a deep submicron region and has a low parasitic resistance, a low parasitic capacitance, and a small drain junction leakage current. A shallow concave is formed in a channel forming portion and an extension region forming portion of a MISFET, shallow ion implantation for forming an extension region is performed to a bottom surface of the shallow concave. Deep ion implantation for forming a source/drain region is performed to a silicon substrate adjacent to the concave, and the position of a peak concentration of the shallow ion implantation is caused to coincide with the position of a peak concentration of the deep ion implantation, so that a MISFET which suppresses a short-channel effect and has a low source/drain parasitic resistance, a low source/drain parasitic capacitance, and a small drain junction leakage current generated by SALICIDE steps can be provided.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: October 24, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Satoshi Inaba
  • Patent number: 7122455
    Abstract: For patterning an IC (integrated circuit) material, a rigid organic under-layer is formed over the IC material, and the rigid organic under-layer is patterned to form a rigid organic mask structure. In addition, the rigid organic mask structure is trimmed to lower a critical dimension of the rigid organic mask structure beyond the limitations of traditional BARC mask structures. Any portion of the IC material not under the rigid organic mask structure is etched away to form an IC structure.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: October 17, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Marina V. Plat, Srikanteswara Dakshina-Murthy, Scott A. Bell, Cyrus E. Tabery
  • Patent number: 7122457
    Abstract: A semiconductor chip production method including the steps of: forming a front side recess in a semiconductor substrate; depositing a metal material in the front side recess to form a front side electrode electrically connected to a functional device formed on the front surface; removing a rear surface portion of the semiconductor substrate to reduce the thickness of the semiconductor substrate to a thickness greater than the depth of the front side recess; forming a rear side recess communicating with the front side recess in the rear surface of the semiconductor substrate after the thickness reducing step; and depositing a metal material in the rear side recess to form a rear side electrode electrically connected to the front side electrode for formation of a through-electrode.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: October 17, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Kazumasa Tanida, Yoshihiko Nemoto, Naotaka Tanaka
  • Patent number: 7109132
    Abstract: High-density plasma CVD processes with improved gap filling characteristics are provided. In one exemplary process, the process includes loading a semiconductor substrate into a process chamber. First main process gases, including a silicon source gas, an oxygen gas, a nitrogen free chemical etching gas and a hydrogen gas, are then injected into the process chamber. Thus, a high-density plasma is generated over the semiconductor substrate, and the semiconductor substrate is heated to a temperature in the range of about 550° C. to about 700° C. by the high-density plasma. Thus, a silicon oxide layer is formed to completely fill a gap region without any voids or defects in the semiconductor substrate. In addition, the first main process gases can be replaced with second main process gases including a silicon source gas, an oxygen gas, a nitrogen free chemical etching gas, a hydrogen gas and a helium gas.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: September 19, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jai-Hyung Won, Young-Kyou Park
  • Patent number: 7105396
    Abstract: A phase changeable memory cell that includes a substrate, a bottom electrode, a phase changeable material layer pattern, and a top electrode. The bottom electrode is on the substrate. The phase changeable material layer pattern is on the bottom electrode. The top electrode is on the phase changeable material layer pattern, and has a tip that extends toward the bottom electrode.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: September 12, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-nam Hwang, Se-ho Lee