Patents Examined by Moin M Rahman
  • Patent number: 11349071
    Abstract: A memory device may include at least one inert electrode, at least one active electrode, an insulating element arranged at least partially between the at least one active electrode and the at least one inert electrode, and a switching element arranged under the insulating element. The switching element may be arranged at least partially between the at least one active electrode and the at least one inert electrode. The switching element may include a first end and a second end contacting the at least one active electrode; and a middle segment between the first end and the second end, where the middle segment may at least partially contact the at least one inert electrode.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: May 31, 2022
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Desmond Jia Jun Loy, Eng Huat Toh, Shyue Seng Tan, Steven Soss
  • Patent number: 11342429
    Abstract: A semiconductor device and method of making the same are disclosed. The semiconductor device includes a memory gate on a charge storage structure formed on a substrate, a select gate on a gate dielectric on the substrate proximal to the memory gate, and a dielectric structure between the memory gate and the select gate, and adjacent to sidewalls of the memory gate and the select gate, wherein the memory gate and the select gate are separated by a thickness of the dielectric structure. Generally, the dielectric structure comprises multiple dielectric layers including a first dielectric layer adjacent the sidewall of the memory gate, and a nitride dielectric layer adjacent to the first dielectric layer and between the memory gate and the select gate. Other embodiments are also disclosed.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 24, 2022
    Assignee: Cypress Semiconductor Corporation
    Inventors: Shenqing Fang, Chun Chen, Unsoon Kim, Mark T. Ramsbey, Kuo Tung Chang, Sameer S. Haddad, James Pak
  • Patent number: 11342241
    Abstract: A power module, including: a first conductor, disposed at a first reference plane; a second conductor, disposed at a second reference plane, wherein projections of the first and second conductors on the first reference plane have a first overlap area; a third conductor, disposed at a third reference plane; a plurality of first switches, first ends of which are coupled to the first conductor; and a plurality of second switches, first ends of which are coupled to second ends of the first switches through the third conductor, and second ends of the second switches are coupled to the second conductor, wherein projections of minimum envelope areas of the first and second switches on the first reference plane have a second overlap area, and the first and second overlap areas have an overlap region. Heat sources of the power module are evenly distributed and its parasitic inductance is low.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: May 24, 2022
    Assignee: Delta Electronics (Shanghai) CO., LTD
    Inventors: Wei Cheng, Shouyu Hong, Dongfang Lian, Tao Wang, Zhenqing Zhao
  • Patent number: 11329165
    Abstract: A semiconductor device structure is provided, which includes a first fin structure over a semiconductor substrate. The first fin structure has multiple first semiconductor nanostructures suspended over the semiconductor substrate. The semiconductor device structure includes a second fin structure over the semiconductor substrate, and the second fin structure has multiple second semiconductor nanostructures suspended over the semiconductor substrate. The semiconductor device structure includes a dielectric fin between the first fin structure and the second fin structure. In addition, the semiconductor device structure includes a metal gate stack wrapping around the first fin structure, the second fin structure, and the dielectric fin. The semiconductor device structure includes a dielectric protection structure over the metal gate stack.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: May 10, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Chiang, Huan-Chieh Su, Kuan-Ting Pan, Shi-Ning Ju, Chih-Hao Wang
  • Patent number: 11329190
    Abstract: There is provided a light emitting device including: a substrate; and a laminated structure provided on the substrate and having a plurality of columnar portion groups, in which the columnar portion group includes at least one first columnar portion, and a plurality of second columnar portions, the first columnar portion has a light emitting layer into which a current is injected to generate light, no current is injected into the second columnar portion, an optical confinement mode is formed in the plurality of columnar portion groups, the first columnar portion is disposed at a position that overlaps a peak of electric field intensity, and the second columnar portion is disposed at a position that does not overlap the peak of electric field intensity.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: May 10, 2022
    Inventors: Shunsuke Ishizawa, Katsumi Kishino
  • Patent number: 11329193
    Abstract: An optoelectronic semiconductor component and a method for producing an optoelectronic semiconductor component are disclosed.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: May 10, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Xiaojun Chen, Alexander Frey, Philipp Drechsel, Thomas Lehnhardt, Lise Lahourcade, Jürgen Off
  • Patent number: 11322410
    Abstract: Methods for tuning threshold voltages of fin-like field effect transistor (FinFET) devices are disclosed herein. An exemplary integrated circuit device includes a high voltage n-type FinFET, a high voltage p-type FinFET, a low voltage n-type FinFET, and a low voltage p-type FinFET. Threshold voltages of the high voltage n-type FinFET and the high voltage p-type FinFET are greater than threshold voltages of the low voltage n-type FinFET and the low voltage p-type FinFET, respectively. The high voltage n-type FinFET, the high voltage p-type FinFET, the low voltage n-type FinFET, and the low voltage p-type FinFET each include a threshold voltage tuning layer that includes tantalum and nitrogen. Thicknesses of the threshold voltage tuning layer of the low voltage n-type FinFET and the low voltage p-type FinFET are less than thicknesses of the threshold voltage tuning layer of the high voltage n-type FinFET and the high voltage p-type FinFET, respectively.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: May 3, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Liang Cheng, Wei-Jen Chen, Yen-Yu Chen, Ming-Hsien Lin
  • Patent number: 11322457
    Abstract: Embodiments include semiconductor device packages and methods of forming such packages. In an embodiment, the package may include a die-side reinforcement layer with a cavity formed through the die-side reinforcement layer. A die having a first side and an opposite second side comprising a device side may be positioned in the cavity with the first side of the die being substantially coplanar with a first side of the die-side reinforcement layer. In an embodiment, a build-up structure may be coupled to a second side of the die. Embodiments include a build-up structure that includes a plurality of alternating layers of patterned conductive material and insulating material.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: May 3, 2022
    Assignee: Intel Corporation
    Inventors: Digvijay A. Raorane, Ian En Yoon Chin, Daniel N. Sobieski
  • Patent number: 11315921
    Abstract: An integrated circuit die includes a FinFET transistor. The FinFET transistor includes an anti-punch through region below a channel region. Undesirable dopants are removed from the anti-punch through region during formation of the source and drain regions. When source and drain recesses are formed, a layer of dielectric material is deposited in the recesses. An annealing process is then performed. Undesirable dopants diffuse from the anti-punch through region into the layer of dielectric material during the annealing process. The layer of dielectric material is then removed. The source and drain regions are then formed by depositing semiconductor material in the recesses.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: April 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Chen Ho, Chien Lin, Tzu-Wei Lin, Ju Ru Hsieh, Ching-Lun Lai, Ming-Kai Lo
  • Patent number: 11315785
    Abstract: A method includes providing a semiconductor substrate; epitaxially growing a blocking layer from a top surface of the semiconductor substrate, wherein the blocking layer has a lattice constant different from the semiconductor substrate; epitaxially growing a semiconductor layer above the blocking layer; patterning the semiconductor layer to form a semiconductor fin, wherein the blocking layer is under the semiconductor fin; forming a source/drain (S/D) feature in contact with the semiconductor fin; and forming a gate structure engaging the semiconductor fin.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: April 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Che Chiang, Wei-Chih Kao, Chun-Sheng Liang, Kuo-Hua Pan
  • Patent number: 11309434
    Abstract: A semiconductor device includes a layer stack with a plurality of first semiconductor layers of a first doping type and a plurality of second semiconductor layers of a second doping type complementary to the first doping type. A first semiconductor region of a first semiconductor device adjoins the first semiconductor layers. Each second semiconductor region of the first semiconductor device adjoins at least one of the second semiconductor layers, and is spaced apart from the first semiconductor region. A third semiconductor layer adjoins the layer stack and each first semiconductor region and each second semiconductor region. The third semiconductor layer includes a first region arranged between the first semiconductor region and the second semiconductor region in a first direction. A third semiconductor region of the first or the second doping type extends from a first surface of the third semiconductor layer into the first region.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: April 19, 2022
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Ahmed Mahmoud, Rolf Weis, Armin Willmeroth
  • Patent number: 11302879
    Abstract: A flexible display substrate and a manufacturing method therefor, and a display apparatus, for relieving the problem that it is difficult to bend the flexible display substrate in a bending region to damage an upper circuit. The flexible display substrate comprises a back film, a first flexible base substrate located above the back film, and a second flexible base substrate located on one side of the first flexible base substrate facing away from the back film. The flexible display substrate has a bending region. An auxiliary layer is further provided between the first flexible base substrate and the second flexible base substrate. At least part of the auxiliary layer in the bending region can be decomposed in a preset condition, wherein the other film layers except the auxiliary layer are maintained at the original status in the preset condition.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: April 12, 2022
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Lu Liu, Pao Ming Tsai, Peng Cai, Hong Li, Dejun Bu, Jianwei Li, Liqiang Chen
  • Patent number: 11296041
    Abstract: An integrated antenna package structure including a chip package and an antenna device is provided. The antenna device is disposed on the chip package. The chip package includes a chip, an encapsulant, a circuit layer, and a conductive connector. The encapsulant at least directly covers the back side of the chip. The circuit layer is disposed under the encapsulant and electrically connected to the chip. The conductive connector penetrates the encapsulant and is electrically connected to the circuit layer. The antenna device includes a dielectric body, a coupling layer, and an antenna layer. The dielectric body has a first dielectric surface and a second dielectric surface opposite to the first dielectric surface. The coupling layer is disposed on the second dielectric surface of the dielectric body. The antenna layer is disposed on the first dielectric surface of the dielectric body. The antenna layer is electrically connected to the conductive connector.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: April 5, 2022
    Assignee: Powertech Technology Inc.
    Inventors: Shang-Yu Chang Chien, Hung-Hsin Hsu, Nan-Chun Lin
  • Patent number: 11296149
    Abstract: A display substrate having an array of a plurality of subpixels is provided. The display substrate includes a base substrate; a pixel driving layer including a plurality of thin film transistors on the base substrate; a tuning layer on a side of the pixel driving layer away from the base substrate, thicknesses of the tuning layer being different in subpixels of different colors; and a plurality of organic light emitting diodes on a side of the tuning layer away from the pixel driving layer. A respective one of the plurality of organic light emitting diodes includes a hole injection layer, thicknesses of the hole injection layer being different in subpixels of different colors. The thicknesses of the tuning layer and the thicknesses of the hole injection layer are negatively correlated among the subpixels of different colors.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: April 5, 2022
    Assignees: Hefei Xinsheng Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Youyuan Hu, Mengyu Luan
  • Patent number: 11289601
    Abstract: A semiconductor sensor includes a source element; a drain element; and a semiconductor channel element between the source element and the drain element, forming an electrically conductive channel. An insulator is positioned between the semiconductor channel element and a solution to be sensed. A reference contacts the solution and sets an electric potential of the solution. A bias voltage source generates an external sensor bias voltage for electrically biasing the reference electrode. A sensing surface interacts with the solution comprising analytes for generating a surface potential change at the sensing surface dependent on the concentration of analytes. The sensor further includes a ferroelectric capacitance element between the insulator and the bias voltage source for generating a negative capacitance for a differential gain between the external sensor bias voltage and an internal sensor bias voltage sensed at a surface of the channel element facing the insulator or ferroelectric capacitance element.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 29, 2022
    Assignee: ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Mihai Adrian Ionescu, Francesco Bellando, Ali Saeidi
  • Patent number: 11287333
    Abstract: A pressure sensing unit includes: a first substrate and a second substrate opposite to each other; and at least one vertical thin film transistor disposed between the first substrate and the second substrate. Each vertical thin film transistor includes a first electrode, a semiconductor active layer, a second electrode, at least one insulating support, and a gate electrode sequentially disposed in a direction extending from the first substrate to the second substrate. A first air gap is formed by the presence of the at least one insulating support between the gate electrode and the second electrode of each vertical thin film transistor.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: March 29, 2022
    Assignees: Hefei Xinsheng Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Qinghe Wang, Dongfang Wang, Bin Zhou, Ce Zhao, Tongshang Su, Leilei Cheng, Yang Zhang, Guangyao Li
  • Patent number: 11289377
    Abstract: The present disclosure relates to a fabrication process of a semiconductor chip, which starts with providing a precursor wafer mounted on a carrier. The precursor wafer includes a precursor substrate and component portions between the carrier and the precursor substrate. The precursor substrate is then thinned down to provide a thinned substrate, which includes a substrate base adjacent to the component portions and an etchable region over the substrate base. Next, the etchable region is selectively etched to generate a number of protrusions over the substrate base. Herein, the substrate base is retained, and portions of the substrate base are exposed through the protrusions. Each protrusion protrudes from the substrate base and has a same height. A metal layer is then applied to provide a semiconductor wafer. The metal layer selectively covers the exposed portions of the substrate base and covers at least a portion of each protrusion.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: March 29, 2022
    Assignee: QORVO US, INC.
    Inventor: Deep C. Dumka
  • Patent number: 11282880
    Abstract: A linear image sensor includes first and second sensor chips, first and second substrates, a common support substrate, a support portion, a dam portion, and a sealing portion. The first sensor chip is mounted to partially protrude on one end side of the first substrate. The second sensor chip is mounted to partially protrude on one end side of the second substrate. The first and second substrates are mounted on the common support substrate. The support portion is provided in a gap between the end faces of the first and second substrates. The dam portion is provided annularly to surround the sensor chips. The sealing portion seals the sensor chips, in a region surrounded by the dam portion.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: March 22, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Norihiro Muramatsu, Katsunori Nozawa
  • Patent number: 11276690
    Abstract: The present application provides an integrated semiconductor device and an electronic apparatus, comprising a semiconductor substrate and a first doped epitaxial layer having a first region, a second region, and a third region; a partition structure is arranged in the third region; the first region is formed having at least two second doped deep wells, and the second region is formed having at least two second doped deep wells; a dielectric island partially covers a region between two adjacent doped deep wells in the first region and second region; a gate structure covers the dielectric island; a first doped source region is located on the two sides of the gate structure, and a first doped source region located in the same second doped deep well is separated; a first doped trench is located on the two sides of the dielectric island in the first region, and extends laterally to the first doped source region.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: March 15, 2022
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Patent number: 11271137
    Abstract: A light article includes: a substrate; a truncated cuboidal fin disposed on the substrate and including: a laterally-grown nanocrystal including a longitudinal length and a lateral length that are different; a charge injection facet arranged along a longitudinal fin axis of the truncated cuboidal fin; and a truncation facet disposed opposing the charge injection facet and arranged parallel to the longitudinal fin axis; a side-injector disposed on the charge injection facet of the truncated cuboidal fin and that provides electrons to an active layer; and the active layer interposed between the side-injector and the substrate and that: receives electrons from the side-injector; receives holes from the substrate; and produces light in response to combining the electrons and the holes.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: March 8, 2022
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Babak Nikoobakht, Robin Paul Hansen